
Infor ION Development Guide–Cloud
Edition

2020-x

Copyright © 2020 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose").

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor ION 12.0.x
Publication Date: May 7, 2020
Document code: ion_12.0.x_ioncedg_en-us

Contents

About this guide...8

Contacting Infor...8

Chapter 1: Introduction..9

Adopting ION...10

Chapter 2: BODs and messages...12

BOD...12

Noun..13

Verb...13

General concepts..14

Documentation Identification...15

Message headers..16

Mandatory fields..16

Optional fields..17

Deprecated field...18

Chapter 3: Verbs and Verb Patterns..19

Verbs...19

Action codes..20

Sync verb..21

Publishing a Sync BOD...21

Process and Acknowledge verbs..22

Get and Show verbs..22

Load and Update verbs...23

Confirm BOD...24

Example of Use verbs...24

Fragmented data...25

Network connection...26

Infor ION Development Guide–Cloud Edition | 3

Contents

Chapter 4: Message contents..27

Noun references..27

Documents encoding...27

Date and time..28

Chapter 5: Connecting to ION...29

Infor Application Connector...29

Using third-party connectors...30

Alternative connector...30

Justification of file connector..30

Chapter 6: Infor Application Connector (IMS)..31

IMS v3 introduction..31

Guidelines for application teams that switch from v2 to v3..32

IMS interaction..34

Application sends a message to ION...34

ION sends a message to an application..35

Chapter 7: Using the Infor Application Connector..38

Application connection points..38

Inbox and outbox tables..38

COR_OUTBOX_ENTRY..39

COR_OUTBOX_HEADERS...40

COR_INBOX_ENTRY..40

COR_INBOX_HEADERS...41

ESB_INBOUND_DUPLICATE...42

Removing messages from the inbox and outbox tables..42

Polling Message Preference..42

Single I/O Box for Multi-tenant...43

Single I/O Box for Multi-Logical Ids..43

Chapter 8: ION Connecting Considerations...45

Handling transactions..45

Message sequence...45

Duplicated messages..46

Sending documents in batch...46

Publish historical data...48

Message reprocessing..48

Infor ION Development Guide–Cloud Edition | 4

Contents

Performance..48

Chapter 9: Adopting Event Management, Workflow, or Pulse..50

Alerts, notifications and tasks..50

When to use Pulse, Event Management and Workflow..51

Chapter 10: Starting a workflow from an application..52

Starting a workflow through ProcessWorkflow..52

Canceling a workflow through ProcessWorkflow...54

Workflow BOD details..55

Sample workflow BODs...58

Sample ProcessWorkflow to start a workflow..58

Sample AcknowledgeWorkflow when the request was accepted..59

Chapter 11: Creating alerts, tasks, or notifications from an application....................................61

Creating alerts, tasks, or notifications...61

Creating tasks from an application...62

Important notes..63

Creating an alert..63

Creating a task...64

Creating a notification..65

Receiving status updates on alerts, tasks, or notifications..65

Receiving status updates...67

Canceling alerts, tasks, or notifications...67

Receiving status updates...68

Canceling an alert..69

Canceling a task..69

Canceling a notification..70

Pulse BOD details...70

PulseAlert..70

PulseTask...76

PulseNotification..83

Supported features..90

Chapter 12: Creating custom metadata..92

Data Catalog contents...92

Before customizing the Data Catalog..93

Object Naming Conventions..93

Infor ION Development Guide–Cloud Edition | 5

Contents

Custom objects of type ANY...94

Defining a custom object of type ANY...94

Custom objects of type JSON...94

Defining a custom object of type JSON...95

Newline-delimited JSON..95

Custom objects of type DSV...96

Defining a custom object of type DSV...96

Dialect properties for DSV objects...98

Metadata for localized strings..99

Method 1..99

Method 2..100

Using datetime formats...101

Custom datetime formats...102

Schema Property Order..104

Defining additional object metadata properties...105

Additional properties file..105

Defining a custom noun...107

Customizing an existing noun..111

Using properties in the UserArea...111

Using a custom XML structure in the UserArea...112

Using an XSD extension for validation...113

Chapter 13: Custom message headers...115

Custom headers file format...115

Chapter 14: Application Programming Interface (API)..121

ION OneView API..121

Available API Methods...122

ION Process API...123

Data Catalog API...123

Available REST APIs...124

Business Rules API...126

Data Lake API...127

Retrieving data objects..128

Querying data objects..129

Purging data objects..130

Infor ION Development Guide–Cloud Edition | 6

Contents

Archiving data objects..131

Restoring data objects...131

Chapter 15: Data Lake queries..133

Data Lake data object definitions..133

JSON data objects...133

DSV data objects...134

Data object definitions for localized string values..134

Data Lake JDBC driver for Birst..136

Data Selection Features..136

Data Selection for Localized String Values..137

SQL Query Expressions..138

Troubleshooting SQL expressions...140

Data Lake Compass queries...143

Query functionality and syntax...143

Spark query functionality...154

Infor functionality..157

Queries for incremental data loads..158

Variation handling..166

Data Lake database schemas...169

Query processing...170

Handling Data Catalog object metadata changes and Data Lake changes in Compass data

through administration stored procedures...171

Compass JDBC driver...174

Query result set differences...174

Query error handling..175

Troubleshooting Compass queries...175

Appendix A: Valid characters for document names..178

Infor ION Development Guide–Cloud Edition | 7

Contents

About this guide

This guide explains how to adopt ION for new applications that you want to connect to ION.

The guide also explains how you can add metadata for your own documents or for extensions on
standard documents.

Intended audience

The document is intended for this audience:

• System Administrators
• Business Process Administrators
• Business Analysts
• Database Administrators
• Application Administrators

Related documents

You can find the documents in the product documentation section of the Infor Support Portal, as
described in "Contacting Infor".

• Infor ION Desk User Guide
• The "Infor Ming.le administration" section in the Infor Ming.le Cloud Edition Online Help
• Infor ION API Administration Guide

Contacting Infor
If you have questions about Infor products, go to Infor Concierge at https://concierge.infor.com/ and
create a support incident.

The latest documentation is available from docs.infor.com or from the Infor Support Portal. To access
documentation on the Infor Support Portal, select Search > Browse Documentation. We recommend
that you check this portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor ION Development Guide–Cloud Edition | 8

About this guide

https://concierge.infor.com/
https://docs.infor.com/
mailto:documentation@infor.com

Chapter 1: Introduction

ION is a new generation of business middleware that is lighter weight, less technically demanding to
implement, and built on open standards.

In addition to connectivity with ION, you get workflow and business event monitoring in a single,
consistent architecture. ION uses an event-driven architecture. It can pro-actively push data, work
activities, and exception notifications to users. The ION Suite includes several powerful services to
install and configure.

This diagram shows the ION Suite services:

ION Inbox

Browser-based end-user
interface to view and manage
work and business information

ION Desk

Browser-based interface for easily
modeling and managing ION

Handle alerts, tasks
and notifications

Data Lake & Catalog

Large scale storage of
heterogeneous data

ION Service

Robust, scalable and platform-independent
engines for all ION Services

Secure and fast data
processing and

document delivery

Store data and
metadata

Modeling using
graphical modelers

Management
configuration and

securtiy

Event management,
workflow and activities

engines

ION Connect

With ION Connect you can establish connections between applications, which can either be Infor
applications or third party applications. A set of connectors is available to connect many types of
resources such as Infor applications, databases, message queues, or files. This varies from cloud or
on premises. In ION Desk you can model document flows between applications. Such flows can
represent a business process. But also more technical flows can be defined. For example, to map data

Infor ION Development Guide–Cloud Edition | 9

Introduction

from a third party application to a standard business object document as used by an Infor application.
You can also use filtering or content-based routing.

Workflow

In Workflow you can model business processes. A workflow can include tasks to be executed by a
user, notifications to be sent to a user, decisions, parallel flows and loop backs. The modeling is done
graphically. Workflows can be used to automate approval processes, and for other types of business
processes. For example, a review flow consisting of several parallel tasks that are sent to multiple
users to review the same document.

Event Management

Using Event Management you can monitor business events that are based on business rules. Users
receive an alert when an exception occurs. For example, if a stock quantity is low, if a shipment is late,
or if a contract must be renewed.

Pulse

With Pulse you can follow what happens in your organization. Either by following specific business
documents or by following alerts, tasks or notifications.

Adopting ION
Adoption of ION is relevant in these situations:

• You want to integrate with other applications.
• You want to extend your application with Event Management, Workflow, or Pulse functionality.

To adopt ION these steps are required:

1 Preparation

Getting the requirements clear is a major factor for success. What is the business case? In particular
to identify business case of integration, system(s) to integrate with, data to exchange between
systems, and mapping from BODs to data in involved applications.

Event Management or Workflow capabilities, or both, can play an important role in adoption
consideration.

An introduction to ION as a product, see the Infor ION Desk User Guide.

Additionally, it is important to understand some basic terms that are relevant for ION.

See BODs and messages on page 12.

2 Connect to ION.

Enable the application to connect to ION.

See "Connecting to ION".

3 If required, adopt Event Management, Workflow, or Pulse.

Infor ION Development Guide–Cloud Edition | 10

Introduction

See Adopting Event Management, Workflow, or Pulse on page 50.

Infor ION Development Guide–Cloud Edition | 11

Introduction

Chapter 2: BODs and messages

This section explains the terminology to adopt ION for an application.

BOD
A Business Object Document (BOD) is an XML document being a generic representation of a business
object. A common language used for information integration. Infor have defined a set of standard BODs.
At a high level, all BODs have some common characteristics. This standardization makes it easier to
understand and use various BODs.

A BOD contains two parts: a noun and a verb.

Infor ION Development Guide–Cloud Edition | 12

BODs and messages

Noun
A noun is a definition of a set of business data contained in a BOD. The noun represents the properties
of one business object. Examples of nouns are SalesOrder, Item, and BusinessPartner. In ION Desk,
a noun is called a document.

A BOD is data instance of one noun definition. A BOD message can contain multiple instances of the
same noun definition.

Verb
The verb describes the action that is requested for the noun or indicates a response to an action.

A verb can:

• Announce that a business object is created, updated or deleted.
• Indicate a request to create, update or delete a business object.
• Provide a response to a request.
• Report an exception.

This table shows the request verbs supported by Infor:

DescriptionRequest verb

A synchronization message containing changes that took place to a business
object. A Sync message is sent by the owner of the data and can be delivered to
any other application for which this information is relevant.

Sync

A request to create a business object or to apply changes to an existing business
object. A Process message is sent from any application to the application that
owns the data. The owner will send an Acknowledge message in response to the
Process request. The loaded document can be refused.

Process

A request to get the details for a business object. A Get message is sent to the
owner of the data. The owner will send a Show message in response to the Get
request.

Get

The Load verb is used when a document is created by an application that will not
be the owner. A Load message is sent to the owner of the data. The loaded doc-
ument cannot be refused.

Load

The Post verb is similar to the Process verb, but it does not trigger the creation
of an Acknowledge message.

Post

The Update verb is used when data is changed by an application that does not
own the data. The Update verb is similar to the Load verb, in the sense that it
must be accepted by the owner. Namely, the Update message informs the owner
of the data that an event took place and what data was changed by the event.

Update

This table shows the response verbs supported by Infor:

Infor ION Development Guide–Cloud Edition | 13

BODs and messages

DescriptionResponse verb

An Acknowledge response is sent in reply to a Process request. An Acknowledge
response indicates whether the object to be processed was accepted, modified,
or rejected.

Acknowledge

A Show response is sent in reply to a Get request.Show

A Confirm verb is used when a failure happens. A Confirm verb is processed
within ION and is not routed to any other application. The Confirm verb is used
only for the BOD noun. The ConfirmBOD contains a copy of the original message,
to enable an ION administrator to resubmit the same message after fixing the
cause of the problem.

Confirm

If you implement custom nouns, we recommend that you use these verb patterns as applicable:

• Sync
• Process and Acknowledge
• Get and Show

General concepts
The general concepts are explained here.

Tenant
A tenant is a hosting or software as a service (SaaS) concept where all the data of one tenant is always
separated from all the data of other tenants. There is no cross sharing or viewing of data with other
tenants. This concept requires all participants in the messaging to share the same identity for the same
tenant. Therefore, a Tenant Id such as "infor" must have exactly the same meaning on every system
in the messaging space. Tenants can also be used to separate data for a single on-premises customer,
for example, separating data for a test environment from data from the production environment. Tenant
Id is alphanumeric, maximum length is 22 characters.

Message Id
The Message Id is the unique identifier required for each message. The Message Id is used to detect
duplication and to refer to the message in other messages, especially response documents and
ConfirmBOD messages, and for logging. Message Id is alphanumeric, maximum length is 250
characters.

Logical Id
Logical Id provides a name for the instance of an application connected to ION. As the sender and or
receiver of all messages, the application instance is identified by its Logical Id.

Applications must ensure that the Logical Id used in the message matches the Logical Id defined in
ION.

Logical Ids are also used to drill back to an application in an Infor Ming.le environment.

The Logical Id has format: infor.[application or connection type].[Instance name in ION]. The ‘application
or connection type’ can refer to Infor applications such as ‘syteline’, ‘eam’ or ’ln’, or refer to technology

Infor ION Development Guide–Cloud Edition | 14

BODs and messages

connectors, such as ‘file’, ‘ws’ or ‘listener’. The 'instance name' is derived from the connection point
name or message listener name. Logical Ids are alphanumeric, maximum length is 250 characters.

The only characters permitted in a Logical Id are the lowercase letters a-z, the dot(.), the digits 0-9,
an underscore (_) and a dash (-).

Documentation Identification
Here is explained how to identify documentation.

Document ID
The ID of the document, is also available in the BOD, for example:
SyncSalesOrder/DataArea/SalesOrder/Header/DocumentID/ID. As the unique identifier of an object
Document ID is made up of several elements: the tenant, accounting entity, location, ID, and RevisionID.

Document ID is the simple ID for this object in its context, for example respective accounting entity,
tenant etc. When in most cases, it is included in the BOD, Document Id (possibly along with Revision
Id) is referenced in identifying the document in order to track the document in ION OneView, trigger
event monitors, activation policies etc.

Document ID is alphanumeric, maximum length is 100 characters.

Revision ID
Revision ID sets the value that is used to keep multiple versions of the same document unique. An
example of Revision ID: SyncSalesOrder/DataArea/SalesOrder/Header/DocumentID/RevisionID.
Revision ID is alphanumeric, maximum length is 22 characters.

Variation ID
The variation ID of the document, when a Sync BOD is sent out from a system, a variationID is required.
This variationID can be used at the receiving end to discover messages that are received out of
sequence. For example: SyncSalesOrder/DataArea/SalesOrder/Head- er/DocumentID/ID/@variationID.
Variation ID is numeric, the maximum value is 9223372036854775807.

Accounting Entity
Accounting Entity usually represents a legal or business entity, which owns its general ledger. Every
single transaction only belongs to an Accounting Entity. Accounting Entity can also be defined as the
owner of certain master data among the enterprise. Accounting Entity is alphanumeric, maximum
length is 22 characters.

Location
A location is a physical place that is associated to a transaction. A location is owned by a single
accounting entity, and may be used by multiple accounting entities. Location is alphanumeric, maximum
length is 22 characters.

Infor ION Development Guide–Cloud Edition | 15

BODs and messages

Message headers
Some header fields are identified as optional and some are mandatory in message headers.

Mandatory fields
Applications must guarantee the required fields are filled with correct values and format. Otherwise the
message cannot be delivered or processed by consuming applications.

These header fields are required:

TenantID
The Tenant Id identifies the message as belonging to a specific tenant.

See the explanation in General concepts on page 14

MessageID
The Message Id is the unique identifier required for each message. See the explanation in General
concepts.

BODType
The BOD Type header is used in ION Service to determine the verb and noun contained in the message.
The verb and noun are used in routing algorithms. They are also used by client applications to filter
messages from the inbound message queue. This header is case-sensitive and must follow the case
of the verb and noun as used in the OAGIS schema. In the BOD Type, verb and noun are connected
using a dot, that is: [verb].[noun]. For example, Process.PurchaseOrder or Sync.Shipment. We
recommend that you use a noun name with maximum length of 30 characters. The verb does not
exceed 11 characters. Acknowledge is the longest supported verb name. The maximum length of a
BOD Type is 100 characters.

FromLogicalID
The Logical Id of the sending application. This Id is used to identify an application. Every application
must have a unique identifier so that ION can direct documents to that application.

An example of a logical Id is:

lid://infor.eam.myeaminstance

For maximum length and other details, see the explanation on logical ID in General concepts on page
14.

Note: In case of network (tenant-tenant) connection.

When messages are transferred to a different tenant, the original source FromLogicalID is replaced
with the logicalID of Network connection point on the target side.

ToLogicalID
The Logical Id of the destination application.
• Explicit routing:

ION Service routes the message according to the Logical Id provided. This Logical Id must be
valid for the specified routing rules.

You must use explicit routing for BODs that have an Acknowledge or Show verb.

Note: In case of network (tenant-tenant) connection.

Infor ION Development Guide–Cloud Edition | 16

BODs and messages

When messages are transferred to a different tenant, the original ToLogicalID is replaced with
the 'default' value on the target side.

• Implicit routing:

The sending application is not aware who is interested in its message. ION Service routes the
message according to specified routing rules. Therefore, the ToLogicalId header must be set
to lid://default

You must use implicit routing for BODs that have a Sync, Process, Load, Post, Update, Get, or
Confirm verb.

For maximum length and other details, see the explanation on logical ID in General concepts on page
14.

Optional fields
The sending application must leave the optional header fields out or ensure they are filled correctly,
consistent with the BOD XML contents.

In ION the header fields are not filled if they are missing or containing blank fields; but the data is
transported. The receiving application can use the values if they are available, otherwise it can fall
back to the BOD XML contents. The optional header fields are not used in all connectors. For example,
the values of the header fields are not passed on to the stored procedure of a database connection
point.

The optional header fields values cannot be null. Using 0 or a blank string “” is allowed. When using
an Oracle database for in-box and outbox, blank strings are treated as null. Consequently:

• When your application tries to write an optional header field with a blank string value to the outbox
in Oracle, the insert action fails.

• When delivering a message to an in-box in Oracle, optional header fields with a blank string value
are skipped in ION. This is to avoid failure of the message delivery.

Note: The data for the header fields is usually also available inside the BOD message. The sender is
responsible for the consistency between the data in the header and the data inside the BOD. Header
fields as set by the sender are not corrected in ION.

This list shows the header fields to identify the document that is included in the BOD.

• AccountingEntity
• Location
• DocumentId
• RevisionId
• VariationId

For the definition of each of these fields, see Documentation Identification on page 15.

Various header fields are available to support batch processing for large documents. In case of batch
processing, the data can be sent in multiple BODs. The batch information is included inside the BOD,
in the BODID element. Including it in the header can help the receiving application to handle the
messages belonging to the same batch without opening the BOD messages.

Database connection point AnySQL type is populating batch headers.

Infor ION Development Guide–Cloud Edition | 17

BODs and messages

This list shows the header fields to support batch processing for large documents:

• BatchId
• BatchSequence
• BatchSize
• BatchRevision
• BatchAbortIndicator

For details on these fields, see Sending messages in batch on page 46.

To further describe the message content, you can use these additional header fields:

• Instances

Instances header is used to store count of object instances in the message. For example:

• For a streaming JSON message, it indicates the number of instances in the stream.
• For a Show BOD that includes multiple instances, it indicates the number of instances in the

DataArea.
• Source

Source header can be used to preserve information about the message source. In case read file
action of File Connector is used, the source header is automatically populated with the source file
name including file extension.

• Custom

Custom headers can be used to preserve any other type of information that is not covered by other
headers. You can use up to three custom headers per document. Each header must have the
Custom_ prefix.

Deprecated field
'Encoding' is an optional header field which is deprecated.

Details of Encoding see Documents encoding on page 27.

Infor ION Development Guide–Cloud Edition | 18

BODs and messages

Chapter 3: Verbs and Verb Patterns

Standards are applicable to send your documents through ION and to enable all ION functionality for
your document.

Functionality such as content-based routing and event monitoring. These standards are relevant for
all documents, including custom documents.

Verbs
An important concept related to the BODs is the system of record. This is the application instance that
owns a business object. A system of record can own all instances of a noun or it can own part of the
instances.

Being the system of record or not determines the verbs to be used:

• Sync is sent from the system of record.
• Process, Get, Load or Update are requests that are sent to the system of record. For Process, the

system of record will send an Acknowledge in reply. For Get, the system of record will send Show
in reply.

• Confirm is a special type of verb. It is used for noun ‘BOD’, and it is sent when an error occurs in
processing inbound BOD.

This table shows which verb to use for a specific goal:

Verb(s) to useGoal

SyncPublish changes on data owned by my application

Process/AcknowledgeRequest changes on data owned by another ap-
plication

Get/ShowRetrieve data owned by another application

Get/Show (*)Initial load, recovery

ConfirmReport an exception

(*) This is the preferred approach. In theory you can use Show without Get, but then the sender must
know the address (logical ID) of the receiver. An alternative is to use Sync. Especially when adding a
new system of record. But when using this verb, event monitors or activation policies can be triggered.

Infor ION Development Guide–Cloud Edition | 19

Verbs and Verb Patterns

This is what you do not want if Sync messages were already published before for the same data set.
Because the messaging is asynchronous, the application that sends the process must have a way of
handling the pending state until it receives the Acknowledge. For example, when requesting creation
of a new item, the requesting application cannot use the item as if it were there already. In the meantime
the application can use a specific status for the item such as ‘Pending’. Do not use other verbs. In
addition to the listed verbs, ION supports using the Load and Update verbs. These are meant for
integrations where data is loaded into an application where the application must avoid refusing the
data. For example in an EDI scenario.

Action codes
The verb only indicates the action at a high level. It does not indicate whether a document is created,
updated, or deleted. For such details, an action code can be included in the BOD. The action code is
an attribute that is part of the verb section.

This table shows action codes for request verbs (except Get):

DescriptionAction Code

A new business object instance is created.Add

A business object is changed and the complete business object is available
in the message.

Replace

A business object is changed and the message only contains the document
ID and the changed properties. It is not recommended to use this action code.

Change

A business object is deleted.Delete

This table shows action codes for the Acknowledge response verb:

DescriptionAction Code

The business object was created, changed or deleted in accordance with the
Process request.

Accepted

The business object was created or changed, but the resulting business object
differs partly from the requested one.

Modified

The creation, change or deletion was not done.Rejected

Note: For Sync the action code is the view of the system of record. That may not match the status of
the receiving application. For example, SyncMyDocument with action code ‘Add’ and status ‘Draft’ is
sent by application A. But it is not delivered to application B, because of a filter in the document flow.
When application A sends SyncMyDocument with action code ‘Replace’ and status ‘Approved, then
this will be the first document sent to application B. Application B has to add data, even though the
action code is ‘Replace’.

Infor ION Development Guide–Cloud Edition | 20

Verbs and Verb Patterns

Sync verb
Sync is sent from the system of record to anyone who is interested (‘broadcast’). It indicates that a
business object was created, changed or deleted. The action code can be Add, Replace or Delete. Do
not use action code Change. Use Delete only for tenant-level master data.

Publishing a Sync BOD
If you are the owner of a piece of business object data that can be represented in a BOD document.
You can send Sync BODs to inform other parties about the current status. It is important to find the
right balance when publishing Sync BODs. You do not want to publish too many BODs and not all
changes to a document are relevant for the outside world. However, publishing less BODs can limit a
customer when creating an integration or when using event management or workflow.

Take this into account:

1 When is my business object complete?

In case of order entry, when the order header is saved but the lines are not added yet. It is not
useful to publish a sync BOD for the order document. On the other hand, don’t be too late. For
example, you can say “I will not publish this document until it has status ‘Approved’, because it is
still being updated”. But this means that an event monitor cannot generate an alert until the document
is Approved, which can be too late for corrective action.

2 Which status changes are relevant?

It is hard to give general guidelines. What is important for one business document may not be
important for another document. Changing a description or adding a note may not be relevant
outside the context of your application. Changing the status or changing important data such as
amounts or dates will usually be relevant.

3 When is my business object at the end of its lifecycle?

Infor ION Development Guide–Cloud Edition | 21

Verbs and Verb Patterns

Usually data is not deleted but archived when a business object is no longer current. This is
important to sync out. It will inform other applications to not use the business object anymore.

Process and Acknowledge verbs
Process is a request sent to the system of record to add, change or delete a business object. Action
codes for Process: Add, Change, Delete. Acknowledge is the reply sent back to the requestor. Action
codes for Acknowledge: Accepted, Modified, Rejected.

Because the messaging is asynchronous, the application that sends the process must have some way
of handling the pending state until it receives the Acknowledge. For example, when requesting creation
of a new item, the requesting application cannot use the item as if it were there already. In the meantime
the application can use a specific status for the item such as ‘Pending’.

When sending a Process BOD with an Add action code, the system requests a new record to be
created in the Systems of Record (SOR), at this point the unique ID of the object is yet to be created
in the SOR. Hence no Document Id must be populated in the Process BOD, but is populated in Ac
knowledge BOD when the record is successfully created in the SOR.

When the Process BOD gets action code Change the sending system requests a record to be either
modified or deleted or to kick off a process related to the data object sent through the BOD. In this
case Document Id, and Variation Id must still be populated to identify corresponding record in SOR.

Infor does not use action code Delete in Process BODs.

Get and Show verbs
A Get request is sent to the system of record to retrieve one or more business objects. A ‘query language’
kind is used to select the business object(s). The Show is the reply to a Get request. In Infor, the Show
is the only BOD that can contain multiple nouns instances. A Show can also be sent without a Get

Infor ION Development Guide–Cloud Edition | 22

Verbs and Verb Patterns

request. This can be used to push data for initial load or recovery. We do not recommend this, because
it requires that the sender of the Show must know the applications that are interested in this message.
No action codes are used in Get and Show.

The Get verb is used to request data from a system of record (SOR). Either for:

• The purposes of an initial load or reload.
• To get specific instances of a document that the sending system typically does not receive.

Include the Document Id if the Get BOD requests a specific object from the receiving system. Otherwise
a selection criteria through expression element is used.

Load and Update verbs
Load and Update are used in special cases. The loaded documents cannot be refused by the system
of record. These verbs are typically used for EDI. The Load verb is used primarily when a document
is created by a trading partner and then passed into the SOR for the noun. Therefore in similar Process,
there is no Document Id to specify in the BOD. Load is sent to the system of record to add an object.
The action code will always be Add. Update is sent to the system of record to notify of a change. The
action code will always be Replace.

Infor ION Development Guide–Cloud Edition | 23

Verbs and Verb Patterns

Confirm BOD
A ConfirmBOD is sent by an application when processing any inbound BOD and something has gone
wrong. A ConfirmBOD is always handled inside the ION Service, apart from ION it can never be sent
to another application.

When to send Confirm BOD

When an exception that results in an inbound BOD not being processed occurs. The application must
abort the transaction and send a ConfirmBOD.

Sending Confirm BOD from Process BOD

When sending a ConfirmBOD for a Process BOD, also send an Acknowledge with action code ‘Rejected’.
Include a ReasonCode to explain the problem. The sender must be informed through the Acknowledge.
In an Acknowledge BOD you must include the original ApplicationArea from the corresponding Process
BOD. If you cannot get the original ApplicationArea, you can send a ConfirmBOD without an
Acknowledge ‘Rejected’ BOD.

Example of Use verbs
Let us assume that three applications exist:

• Product Data Management: maintain product data (system of record for the ItemMaster noun).
• Order Management: handle sales orders (system of record for the SalesOrder noun).
• Sales: view the products and place orders

In this case, these BODs can be used to integrate these applications:

Infor ION Development Guide–Cloud Edition | 24

Verbs and Verb Patterns

Fragmented data
Data for a single business object can be stored in multiple applications. But it is strongly advised that
at any point in time one application is the owner of a specific piece of information.

If parts of the business object are owned by multiple applications, an enrichment or pipeline pattern
can be used. For example, an ItemMaster business object is partly owned by a Product application
and partly by a Pricing application. It is assumed that a third application exists called Projects. This
application requests items to be created (using Process BODs) and must receive messages if an item
is changed (using Sync BODs). See this diagram for the flows you can use:

For more information about verb definition and context to use, see the Infor Messaging Standards in
Message contents on page 27.

Infor ION Development Guide–Cloud Edition | 25

Verbs and Verb Patterns

Network connection
Reply verb patterns, such as Process and Acknowledge, Get and Show, Load and Update, have some
limitations when the source and target applications are in different tenants.

In this scenario, the target application does not receive the original source FromLogicalID in the
message header and is therefore not able to set ToLogicalID directly to the source application. The
reply message is delivered to the source tenant with ToLogicalID 'default'. Then the automatic
fallback mechanism ensures that the message is delivered to the source application. If there are more
applications producing the same request message in the source tenant, each reply message is delivered
to all of them.

Infor ION Development Guide–Cloud Edition | 26

Verbs and Verb Patterns

Chapter 4: Message contents

Miscellaneous Infor messaging standards are supported by ION which applications must follow.

Noun references
Many nouns are referenced inside other nouns, both master data and transactional nouns. Referenced
information can be found inside a BOD in these ways:

• Specific references used for transactional data, end with the word Reference and have the noun
name at the beginning.

• The generic reference of transactional data through the DocumentReference element that uses
the type attribute which contains the noun name of the referenced object.

• Used with master data which uses the name of the object as the reference and includes additional
information with the reference information.

Documents encoding
An Infor standard is that all XML documents use the UTF-8 encoding. Therefore, there is no need to
set this key. The default is UTF-8.

All readers and writers to the database tables that are used by the Infor Application Connector must
use the exact same encoding mechanisms. When writing a message to the COR_OUTBOX_ENTRY table,
serialize your XML string to the C_XML column as a UTF-8 byte stream. Similarly, when reading the
COR_INBOX_ENTRY table. You extract your XML string from the C_XML column by converting the
bytes as a UTF-8 byte stream.

If you do not use the UTF-8 decoding when reading the XML from the table, and the XML contains
characters that require two bytes, the XML can be invalid. Also the formatting is affected. A worst case
scenario is that you cannot parse the XML document.

Infor ION Development Guide–Cloud Edition | 27

Message contents

Date and time
When working on ION integrated date and time format fields, follow these guidelines:

• Dates and times in BODs are in UTC time.
• They must be represented in a common format, using the capital letter Z at the end of the value.

For example: 2009-08-13T15:30Z.

Infor ION Development Guide–Cloud Edition | 28

Message contents

Chapter 5: Connecting to ION

Applications in the cloud or on premises can be connected to ION using the Infor Application Connector.

The application is truly event-driven. BODs (Business Object Documents) are used as the standard
interface. Using BODs in combination with the in-box/outbox avoids unwanted dependencies and
makes the integration robust. In ION, hardly any configuration is required to connect your application.

On the other hand, the application must be changed or extended to enable the application to publish
and receive BODs. Consequently this is less suitable for customer-specific integration of legacy
on-premises applications. Alternatives in that case are third-party connectors such as File Connector.

Infor Application Connector
The Infor Application Connector makes use of inbox/outbox tables in your applications. ION will post
messages into your inbox and will pick up messages from your outbox.

This diagram shows an example of two applications exchanging messages using inbox and outbox
tables:

To use the Infor Application Connector:

1 Create the inbox/outbox tables. Inbox and outbox tables must be created inside your application.
The tables will be accessed by ION through JDBC. SQL scripts are available from ION Desk.

2 Implement the sending and receiving of the BODs. When a BOD must be published, create the
BOD XML and determine the correct values for the header fields. Then insert the data into the
Outbox tables. When a BOD is received in the Inbox tables, pick up the BOD XML and based on
the content insert or update you application data.

For details, see Using the Infor Application Connector on page 38.

Infor ION Development Guide–Cloud Edition | 29

Connecting to ION

Using third-party connectors

Alternative connector
In addition to Infor Application Connector, File Connector is provided as alternative where files are
used to send or receive messages. For details on these connectors, see the Infor ION Desk User
Guide.

Justification of file connector
Using the Infor Application Connector is preferred, because it is decoupled and event-driven, and the
application can validate the correctness and consistency of incoming data. From a modeling and
management perspective, the Infor Application Connector also is the best choice, because the modeling
is very simple and the management in ION Desk is the richest for this connector.

If you cannot use the Infor Application Connector, you can consider to use File Connector. File Connector
is suitable for legacy applications that only support a file-based integration, and it can be event-driven.
However the application at the other side must be in a position to create files in a format that ION can
process, or read files as provided by ION. The data must be transformed to a BOD (XML) message.
Multilevel data (header and lines) can be formatted in multiple ways in one or more files, while the File
Connector does not support all options. There is a risk of delivering the same message twice in case
of interruptions or timeouts.

Infor ION Development Guide–Cloud Edition | 30

Connecting to ION

Chapter 6: Infor Application Connector (IMS)

This section explains the adoption procedures that applications must fulfill to integrate with ION through
the ION Messaging Service, (IMS), connection point.

IMS is a connector that allows applications to integrate with ION through REST/JSON APIs. Unlike the
IO Box connector, IMS does not require direct access to an application’s database. Instead, IMS
communicates through the secured https protocol, through OAuth 1.0, or through ION API for
authentication. Therefore, IMS is a loosely coupled connector that makes integrations easier.

IMS specifications include well defined API methods. These methods are implemented by ION and
must be implemented by the concerned application. After this, they can push messages to each other
through the APIs.

IMS can send and receive multiple message requests in parallel. Therefore, sequence of message
transport is not guaranteed when using the IMS connector. If sequencing is important, you must use,
for example, a VariationID.

The current IMS protocol supports three versions: v1, v2, and v3. March 2020, IMS protocol v3 was
introduced. New adopters should use the v3 protocol. The v1 and v2 protocols are not described in
this document.

Encoding

For transport performance reasons, especially where it involves larger messages, you can compress
the message before sending. In that case you can use the DEFLATE or GZIP encoding. ION ensures
the message is decompressed before it is delivered to the receiving application.

ION internals are DEFLATE-optimized. Therefore, we recommend the use of DEFLATE over GZIP.

IMS v3 introduction
These are the reasons to introduce an IMS v3 protocol:
• When ION IMS sends a multipartMessage with v3, the message is sent in a format that is

compliant with swagger v2. This can be a breaking change for some applications. Therefore, a
new IMS protocol version is required.

• Introduce a new method: acceptedDocuments. Applications can call this method to check which
documentsIMS is prepared to receive.

Infor ION Development Guide–Cloud Edition | 31

Infor Application Connector (IMS)

This is a new method in ION. Therefore, a new protocol version is required. So an application can
check whether ION is prepared for this method. This is relevant for on-premises deployments.

With that the integration flow with ION changes.

• ION Desk exposes APIs to configure the IMS connection point. These APIs are a good replacement
for the discovery method.

Extend the IMS endpoint definition with this property: discovery=false. The same can also be
set as part of the protocol method.

ION Desk supports documents that are defined through the UI / API rather than through the dis
covery method.

You can now add documents in the same way as for a regular connection point.

Compared to IMS v2, IMS v3 offers these features:

1 Consistent implementation for multipartMessage method.

In IMS v2, a multipartMessage that was sent by ION itself deviated from the swagger definition.
This issue has been fixed. It was the main reason to introduce version v3 because this might be
a compatibility issue for some adopters.

2 The test method is replaced with the acceptedDocuments method.

You could use the v2 test method to check for a specific document if ION was prepared to receive
it. The acceptedDocuments method lists the documents that IMS accepts for a specific connection
point (logical-id).

3 More granular HTTP status codes.

multipartMessage v2 throws a 412 error, both in case of configuration errors and malformatted
messages. In v3 this is improved as follows:

• A 412 error is thrown for configuration issues, such as an inactive connection point.
• A 400 error is thrown for bad messages, for example because of a missing property.

This way, adopters can handle the response more specifically.

4 The protocol method has an extra option to define whether the discovery method is available.

Traditionally, the two-way (bidirectional) IMS integration required that applications used the dis
covery method to list the documents they can exchange. Nowadays, ION offers APIs to configure
ION Desk models. Applications can call these ION Desk APIs to add and adjust the documents
that are configured on a connection point. Therefore, the discovery method is optional.
Applications can use the hasDiscovery property to indicate whether the discovery method is
implemented by them. The default value is true.

5 Include documentName and logicalId as HTTP parameters.

When ION sends a multipartMessage, the message includes the documentName and logi
calId HTTP parameters. This way, an application can route the message internally without having
to parse the actual message.

Guidelines for application teams that switch from v2 to v3
For a general understanding of the IMS interaction, see IMS interaction on page 34.

Infor ION Development Guide–Cloud Edition | 32

Infor Application Connector (IMS)

If your application currently supports v2, you must complete at least these steps to support v3:

1 Adjust: When calling the ION versions method, check whether ION supports at least v3.

2 If you still use the IMS message method:

a Adopt the v3/multipartMessage method.
b Adjust your protocol response to return "messageMethod" : "multipartMessage".

3 Decide whether you are going to continue to populate documents through the discovery method.
Alternatively, you can configure documents by pushing them to ION by calling the appropriate ION
Desk API methods.

If you plan to switch to using the ION Desk APIs, you must add this property in the protocol response:
"hasDiscovery" : false

4 In IMS v2, when ION sends a multipartMessage, it actually deviates from the multipartMes
sage as defined in IMS swagger.

With IMS v3 that issue is fixed, but as a consequence you receive the multipartMessage in a
different format from ION.

The differences are:

a The body for the payload now has a fixed Content-Disposition: form-data;name="Mes
sagePayload". With v2 ION would send the Content-Disposition with the same name
as used in the Content-Disposition of the parameter body.

b The body for the parameters now has a fixed Content-Disposition: form-da
ta;name="ParameterRequest". With v2 ION would send the Content-Disposition
with the same name as used in the Content-Disposition of the payload body.

5 After successfully processing a multipartMessage v3 request, ION sends an HTTP status code
202 (Accepted) instead of 201 (Created). We recommend that you handle any 2xx HTTP status
response as a positive response. If you check specifically for 201, you must change your
implementation.

6 Based on the multipartMessage HTTP status response that is provided by ION, you now can
better identify these situations:

• The method was called incorrectly: HTTP status response 400
• The request itself is correct but the ION side is not yet configured to receive the message:

HTTP status response 412

7 In IMS v3, the acceptedDocuments method is introduced as a replacement for the test method.
With a single method you now can retrieve all documents that are accepted by a connection point
in ION.

8 When ION sends a v3 multipartMessage, it includes the documentName and logicalId as
HTTP parameters. Therefore, you can use these parameters to route the incoming request instead
of having to parse the parameter body.

Infor ION Development Guide–Cloud Edition | 33

Infor Application Connector (IMS)

IMS interaction

Application sends a message to ION

Initialization phase: Prepare for sending messages

These methods are used by your application to get information and verify whether message processing
is enabled:

1 GET <Application>/service/ping

Checks whether ION can reach your application and checks whether ION is authorized for your
application.

Note: Although the ION ping still returns a body, ignore that body. That body response is deprecated
and will no longer be sent when API v1 is no longer supported.

2 GET <ION>/service/versions

Checks whether the ION version is v3 or later.

3 GET <ION>/service/v3/<logicalid>/acceptedDocuments

Gets, from ION, the list of documents that ION is prepared to receive from the application (lid).

HTTP status code 200: returns a list of documents that ION accepts to receive. If the connection
point is inactive or does not exist, that is, not entitled, an HTTP status code 412 is returned.

4 If a document is missing:

In ION Desk, open the connection point model and add the document to be 'sent by application'.

Return to step 3.

5 Now the sending of messages can start for document types that are accepted by ION.

Note: For ION to accept a message, at least these conditions must be met:

• If IMS is called directly:
• The OAuth credentials are correct, else HTTP status code 401 is returned.
• OAuth principle is authorized for IMS, else HTTP status code 403 is returned.

• If IMS is called through ION API: the client-Id of the ION API-authorized App is configured in the
IMS through ION API connection point.

• The fromLogicalId matches with the logical-id that is related to this OAuth principle. Else
HTTP status code 403 is returned.

• The connection point is active and the document type is defined on the documents tab of the
connection point.

Send a message

This section describes the sequence when sending a message to ION.

Only start this cycle after the 'prepare for sending messages' procedure. In other words: only send
messages that are accepted by ION CE.

1 GET <ION>/service/ping

Infor ION Development Guide–Cloud Edition | 34

Infor Application Connector (IMS)

If this is successful, then continue. Otherwise retry and raise errors.

For the retry it is required to increase the delay between retries if the problem exists longer. Consider
to aggregate the ERROR message to prevent log flooding.

If the returned error is a 401 or 403, then stop sending messages. Instead, take corrective action,
for example, by getting a correct OAuth keypair from ION.

2 GET <ION>/service/versions

Check whether the ION version is v3 or later.

3 POST <ION>/service/v3/multipartMessage

Http header X-TenantId

If sending the message fails, based on the error code:

a HTTP status code 401, 403, 503, etc.: Return to the ping, step 1.
b HTTP status code 400: Raise an error to the admin that an invalid message was sent. Stop

processing until the issue is resolved or skip this message and continue with the next.
c HTTP status code 412: Return to the initialization phase: Prepare for sending messages.

If the message was sent successfully, then continue with the next message, step 3.

ION sends a message to an application

Prepare your application to receive IMS requests from ION

Ensure your application exposes these methods, which are used by ION to get information and verify
whether message processing is enabled:

• GET <Application>/service/ping

Checks whether ION can connect to your application and checks whether ION is authorized for
your application.

• GET <Application>/service/protocol

Retrieves the expected IMS API version and protocol parameters from the application.

• POST <Application>/service/v2/discovery

Http header X-TenantId

Called during modeling of the connection point in ION Desk. Retrieves, from the application, the
documents that are supported to be exchanged.

Implementation is optional: if not implemented, ensure that the hasDiscovery property in the
protocol method response is false.

• POST <Application>/service/v2/multipartMessage

Http header X-TenantId

Sends the actual message.

Infor ION Development Guide–Cloud Edition | 35

Infor Application Connector (IMS)

Configuration

Ensure an Infor application (IMS) connection point is configured in ION. This connection point must be
used in a document flow. Ensure this document flow is activated.

Testing the connectivity

To test connectivity from ION to your application, you can click the Test button in the ION Desk
connection point model.

Methods to verify connectivity and configuration

These methods are used by ION to verify connectivity and configuration:

• GET <Application>/service/ping

Checks whether ION can reach your application and checks whether ION is authorized for your
application.

• GET <Application>/service/protocol

Retrieves the expected IMS API version and protocol parameters from the application.

If this method fails, ION calls the GET <Application>/service/versions method and
continues with v1. The application is probably on v1.

If an ION Desk user opens the Documents tab on the IMS connection point screen, ION calls the
ping and protocol methods. Based on the protocol response, ION enables or disables the
Discovery option on the Documents tab.

Methods that are executed if "The IMS End point has Discovery" is true and the application IMS
protocol version is v3

The discovery method can only be called if "the IMS End point has Discovery" is true.
When ION Desk calls the discovery method, these methods are executed by ION towards the
application:

• GET <Application>/service/ping

Checks whether ION can reach your application and checks whether ION is authorized for your
application.

• GET <Application>/service/protocol

Retrieves the expected IMS API version and protocol parameters from the application.

If this method fails, ION calls the GET <Application>/service/versions method and falls
back to v1 if required.

• If the identified version is v3, ION calls the POST <Application>/service/v3/discovery
method.

Http header X-TenantId

Retrieves, from the application, the documents that are supported to be exchanged.

Infor ION Development Guide–Cloud Edition | 36

Infor Application Connector (IMS)

ION sends a message, when application IMS protocol version is v3

ION executes these methods in the given sequence when a message is being sent:

1 GET <Application>/service/ping

If this method is successful, then ION continues. Otherwise a retry is performed and errors are
raised.

If the retry remains to fail, ION slows down the pace of the retry.

2 GET <Application>/service/protocol

Retrieves the IMS protocol parameters from the application.

If this method fails, ION calls the GET <Application>/service/versions method and expects
version v1.

3 POST <Application>/service/v3/multipartMessage

Http header X-TenantId

If sending the message fails, then, based on the error code, ION performs one of these actions:

• Retry, that is, return to step 1.
• Raise an ERROR for the specific message and continue with the next message.

4 ION continues with the next message, step 3.

Infor ION Development Guide–Cloud Edition | 37

Infor Application Connector (IMS)

Chapter 7: Using the Infor Application Connector

This section explains the adoption procedures that applications must fulfill to integrate to ION using
the Infor Application Connector.

You must have some specific knowledge about these topics:

• Application connection points
• In-box and outbox tables
• Removing messages from the in-box and outbox tables

Application connection points
To connect an application to ION, the application owner must define which BODs that application can
send and receive. To define the BODs for an application, you must create an application connection
point. You can export connection points to an XML file. When you export the connection point without
properties, you can use it as a template for the application.

See the Infor ION Desk User Guide on how to create and export connection points.

Inbox and outbox tables
All applications must add some of these new tables to their existing database so that the application
can read and write the tables in the same transaction as their business logic:

• COR_OUTBOX_ENTRY
• COR_OUTBOX_HEADERS
• COR_INBOX_ENTRY
• COR_INBOX_HEADERS
• ESB_INBOUND_DUPLICATE

Caution: When an application adds a new message to the COR_OUTBOX_ENTRY and
COR_OUTBOX_HEADER tables, the inserts must be performed within the same transaction. Inserts
that are not performed within the same transaction cause data corruption.

To download the scripts to create those tables:

Infor ION Development Guide–Cloud Edition | 38

Using the Infor Application Connector

1 Start ION Desk.
2 Select Configure > ION Service.

The Configure ION Service page is displayed.

3 Click the Configuration Files tab and then click Download Scripts to create I/O Box.
4 Specify a file name and click Save. A zip file is downloaded.
5 Extract the zip file and use the db vendor-specific sql files that are applicable to you. For

Unicode-compatible BOD header fields, use the scripts available with the _unicode suffix.

Note: The script might also generate a COR_PROPERTY table. This table is included for future use,
so you can safely ignore it.

COR_OUTBOX_ENTRY
This table shows the COR_OUTBOX_ENTRY table API:

DescriptionCOR_OUTBOX_ENTRY

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

C_ID

The message that you are sending. The message
must be encoded as described below.

C_XML

The Tenant Id identifies the message as belong-
ing to a specific tenant. A tenant is a hosting or
software as a service (SaaS) concept where all
the data for one tenant is always separated from
all the data of other tenants. There is no cross-
sharing or viewing of data with other tenants. This
concept requires all the participants in the mes-
saging to share the same identity for the same
tenant. Therefore, a Tenant ID of " infor " must
have exactly the same meaning on every system
in the messaging space.

C_TENANT_ID

This field is added since ION 11.1.2. It is added
by running the scripts present in the '3.0' folder
in your inbox/outbox. If present, then this field
must contain the value of the 'from logical id' of
the application that publishes the BOD and it must
be populated with the ‘lid://’ prefix.

C_LOGICAL_ID

Messages with a higher priority are sent before
messages with a lower priority. You can set the
priority from 0 to 9, 9 being the highest priority.
High priority messages should be limited - most
messages should be set at 4.

C_MESSAGE_PRIORITY

Infor ION Development Guide–Cloud Edition | 39

Using the Infor Application Connector

DescriptionCOR_OUTBOX_ENTRY

The date and time the message was inserted into
the outbox table. You must specify the time in
the variable in UTC format.

C_CREATED_DATE_TIME

Users should never provide a value for this col-
umn. The column is used by ION Service to de-
termine whether a message has been sent. Un-
processed messages are marked as 0; processed
messages are marked as 1.

C_WAS_PROCESSED

ION Service removes all the processed messages older than the number of hours specified in the
cleanup advanced properties.

COR_OUTBOX_HEADERS
This table shows the COR_OUTBOX_HEADERS table API:

DescriptionCOR_OUTBOX_HEADERS

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

C_ID

Used to join the headers to the message's
COR_OUTBOX_ENTRY row. As such, this value
should be the same as the message's
COR_OUTBOX_ENTRY C_ID column.

C_OUTBOX_ID

The key used to describe the type of header. For
valid keys, see "Message headers".

C_HEADER_KEY

The header's value.C_HEADER_VALUE

If any of the required headers are not provided, ION Service creates a Confirm BOD for that message.

For the headers to be used, see Message headers on page 16.

COR_INBOX_ENTRY
This table shows the COR_INBOX_ENTRY table API:

DescriptionCOR_INBOX_ENTRY

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

C_ID

Infor ION Development Guide–Cloud Edition | 40

Using the Infor Application Connector

DescriptionCOR_INBOX_ENTRY

The message you are receiving. The message
must be encoded as described.

C_XML

The Tenant ID identifies the message as belong-
ing to a specific tenant. A tenant is a hosting or
software as a service (SaaS) concept where all
the data of one tenant is always separated from
all the data of other tenants. There is no cross-
sharing or viewing of data with other tenants. This
concept requires all participants in the messaging
to share the same identity for the same tenant.
Therefore, a Tenant ID of " infor " must have ex-
actly the same meaning on every system in the
messaging space.

C_TENANT_ID

This field is added since ION 11.1.2. It is added
by running the scripts present in the '3.0' folder
in your inbox/outbox. If present, then this field
contains the 'To logical id' value of the application
to which the BOD is delivered.

C_LOGICAL_ID

Message priority as provided by the application
that sent the message.

C_MESSAGE_PRIORITY

The date and time the message was inserted into
the inbox table. Date and time are in UTC format.

C_CREATED_DATE_TIME

ION Service always sets this to 0. It is the appli-
cation's responsibility to remove processed
messages.

C_WAS_PROCESSED

COR_INBOX_HEADERS
This table shows the COR_ INBOX _HEADERS table API:

DescriptionCOR_ INBOX _HEADERS

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

C_ID

Used to join the headers to the message's COR_
INBOX _ENTRY row. As such, this value should
be the same as the message's COR_ INBOX
_ENTRY C_ID column.

C_ INBOX _ID

The key used to describe the type of header. For
valid keys, see "Message headers".

C_HEADER_KEY

Infor ION Development Guide–Cloud Edition | 41

Using the Infor Application Connector

DescriptionCOR_ INBOX _HEADERS

The header's value.C_HEADER_VALUE

Incoming messages are placed in the COR_INBOX_ENTRY and COR_INBOX_HEADERS tables. All
rows are inserted in the same transaction.

ESB_INBOUND_DUPLICATE
This table is used by ION to maintain the unique Message IDs. ION uses this table to reject duplicate
messages in the ION Service. Applications should not use this table.

Removing messages from the inbox and outbox tables
ION Service removes messages from the COR_OUTBOX_ENTRY and COR_OUTBOX_HEADERS
tables. Removing these messages is achieved in these ways:

• The message is deleted after it is successfully sent by ION Service.
• The message is deleted if it has been successfully sent and is older than XX hours. ION Service

checks for expired messages when it is started, and then checks every hour.

By default, the second option is used. By not deleting the messages immediately, the Manage tab in
ION Desk monitors the COR_OUTBOX_ENTRY table and reports the number of processed and
unprocessed messages. To change this behavior, set the application polling property within ION Desk:

Delete Processed Messages=true

Therefore, ION Service deletes the message after it is sent.

Caution: ION Service does not remove messages from the
COR_INBOX_ENTRY/COR_INBOX_HEADERS tables. The application must provide the code to
clean up these tables. If the tables are not cleaned up, the file system of the database server can get
full.

Polling Message Preference
When you implement ION integration you can decide to use one of these options:

• single inbox/outbox shared by multiple sites (represented by multiple Logical Ids)
• single inbox/outbox shared by multiple tenants in the Cloud.

Infor ION Development Guide–Cloud Edition | 42

Using the Infor Application Connector

A ‘Message processing preference in I/O box’ setting is available in ION Desk Connection Point
Advanced Settings, to cater for two requirements.

Single I/O Box for Multi-tenant
In a multi-tenant environment a single set of Inbox and Outbox tables of the application can be shared
by multiple tenant instances. In such situations an application connection point must process messages
belonging to its own tenant.

To setup Single I/O Box for Multi-tenant:

1 Go to Connection Point definitionConnectionAdvancedMessage processing preference in
I/O box.

2 Select the by Tenant option to be true.
3 When publishing a BOD from your application, specify this information:

• The C_TENANT_ID value of the COR_OUTBOX_ENTRY table.
• The Tenant Id key in the COR_OUTBOX_HEADERS table with the correct tenant value. It must

match with the Tenant value specified in the connection point.

Ensure you do not have more than one connection point from the same tenant sharing the same Inbox
and outbox tables.

The Tenant value is matched in ION in a case-sensitive manner. If the tenant value is blank in the
connection point, the default tenant value of 'INFOR' is assigned. To avoid inconsistencies in tenant
processing, define the Tenant Id according to the Infor standards.

Duplicate detection of messages is not enforced by ION. Under uncommon circumstances such as an
incomplete message processing, this results in delivering the same message twice to an inbox. The
application must be prepared to receive duplicate messages.

Single I/O Box for Multi-Logical Ids
This addresses requirements from applications which have multiple sites where an individual connection
point is defined per site in ION. These applications use the same Inbox and Outbox table between
them. In such situations, messages based on Tenant and based on Logical Id must be processed.

To setup Single I/O Box for Multi-Logical Ids:

1 Upgrade the I/O Box to version 3.0. Go to the 3.0 folder in your I/O box and run the I/O box script
<db>_upgrade.sql.

The downloaded zip file contains these folders: 1.0 and 3.0. The folder 1.0 contains the scripts to
create a base I/O box for the standard databases. This includes: MS SQL server, Oracle, DB2,
DB2400 and MySQL.

The 3.0 folder contains the scripts required to prepare your I/O box to support multiple logical Ids
sharing the same I/O box. Run the scripts in the 3.0 folder to create I/O Box tables in your

Infor ION Development Guide–Cloud Edition | 43

Using the Infor Application Connector

application. For Unicode compatible BOD header fields, you can use the scripts available in the
Unicode folder.

2 Specify the message processing preference to be by logical Id in each connection point defined
for your application.

Go to Connection Point definition > Connection > Advanced > Message processing preference
in I/O box.

Select by Logical ID to be true and select by Tenant to be true.

Before you proceed, check if the column called C_LOGICAL_ID exists in both COR_OUTBOX_ENTRY
and COR_INBOX_ENTRY.

3 When you publish BODs from your application, ensure that the correct values are specified in these
columns:

• COR_OUTBOX_ENTRY table, specify C_LOGICAL_ID with your actual Logical Id value.
• COR_OUTBOX_HEADERS table, specify the FromLogicalId key with the correct Logical Id

value.
• Both Logical Ids must match the Logical Id value specified in the connection point.

Note: The Tenant and the Logical Id value are matched in a case-sensitive manner. To avoid
inconsistency in tenant processing, specify the Tenant Id and the Logical Id according to the Infor
standards.

When these properties are not selected, you must ensure that each Infor application connection point
uses its own Inbox and Outbox tables. This will be guaranteed by using different URLs. If you use the
same URL in multiple connection points, then use different users. Ensure the users are linked to different
database schemas in the database management system.

Infor ION Development Guide–Cloud Edition | 44

Using the Infor Application Connector

Chapter 8: ION Connecting Considerations

There are some considerations for applications to take into account when implementing integration
through ION.

Handling transactions
Ensure the publishing and processing of the BODs is done in such a way that no data is lost. Publish
the BODs inside the application transaction that inserts or changes the corresponding business data.
Or, if publishing is done offline, have another mechanism in place that ensures no BODs are lost.

Because ION is event driven you must consider how to publish historical data before you enable ION
integration with your system. Data consistency must be honored. When handling an incoming BOD,
set the status in the Inbox to ‘1’ (processed) in the same transaction as the database updates that are
done while processing the BOD.

Message sequence
Delivering messages in sequence is not guaranteed. Only delivery is guaranteed (at least once). In
some cases the sequence of receiving is the same as the sequence of sending, but you cannot rely
on this. Many factors can impact the sequence, such as:

• Parallel processing (multi-threading).
• Documents traffic.
• Intermediate steps in the process, such as content-based routing, filtering or mapping.

Take these situations into account:

1 Message Delivered with Delay or Out of Sequence sometimes due to network or BOD traffic BODs
are not always delivered on time or in sequence. Especially in case they reference to each other.
For example; a Sync.ItemMaster BOD reaches the application later than a Sync.Purchase
Order. The application may well send out a Confirm BOD for the Sync.PurchaseOder BOD.
Or is highly recommended to set a retry mechanism to have a few tempts based on intervals to
sort out the message delay or out of sequence issue.

Infor ION Development Guide–Cloud Edition | 45

ION Connecting Considerations

2 Message Delivered Out of Sequence for Different Verbs of the Same Object. It happens sometimes
when an application awaits the Acknowledge BOD from the SOR for the object via Process BOD.
The Sync BOD of the same object from the SOR arrives prior to any Acknowledge BOD. This is
similar to point 1, caused by BOD traffic or network, and can be solved by a few times retry in turn.
Therefore applications are recommended to include this into IONAdoption consideration.

3 Multiple updates from SOR on same document out of sequence Multiple changes on the same
document may not arrive in the correct sequence. Use the Variation ID to check whether a Sync
message is out of date. If the Variation ID of an incoming message is lower than a Variation ID
you already processed for the same document type and document ID, then you must not overwrite
the newer information you already have.

4 Data with interdependency break down into a set of documents. This is the same as what is
explained in "Sending messages in batch".

Duplicated messages
When publishing a message in an Infor Application Outbox, the message ID from the header will be
checked. If a message with the same message ID was processed successfully before, the new message
is ignored.

At the end of a flow, in exceptional cases the same message can be delivered twice (guaranteed
delivery ‘at least once’). The receiving party must ignore a message if a message with the same
message ID was processed before.

For that reason, ensure to use a unique message ID when sending a message to your outbox. Otherwise
the message will be ignored. The message ID must be globally unique, so a sequence number generated
by your application is not sufficient.

Sending documents in batch
Avoid sending large documents. Documents up to 5 MB are handled throughout ION.

Do not include large files inside the documents, for example, images or PDF files. Instead, make the
files available in a document management system or another location. Include a reference (URL) in
the document.

Sometimes you must divide a large file into multiple documents. For example, the first document can
contain a header and the first 100 lines. The next document can contain the next 100 lines. Each
document must be valid.

Batch message headers are used to indicate that the document is part of a batch. Batch fields should
not be sent for single documents (batch size = 1).

For BODs, Batch fields are used to indicate that the BOD is part of a batch. The batch fields must be
included inside the BOD XML, in the BODID, and can be included in the message header. The message
header fields are optional. We recommend that you include them. It allows the receiver to handle the

Infor ION Development Guide–Cloud Edition | 46

ION Connecting Considerations

batch without having to open each BOD to determine the correct sequence. Note that the total length
for the BODID cannot exceed 255 characters.

The data types and maximum lengths of the header fields are specified in the table.

This table shows the fields to use:

DescriptionName of element in
BODID

Header Field
Name

The unique ID of the batch. The documents with this
number must be processed sequentially on the receiving
side.

The BatchId is alphanumeric, maximum length is 250
characters.

batchIDBatchId

The sequence number of this document in the batch.
This is required because the documents can arrive out
of sequence.

The BatchSequence is numeric, the maximum value is
9223372036854775807.

batchSequenceBatchSequence

The total number of documents in the batch. This can
be unknown until the last document and omitted for the
other documents.

The BatchSize is numeric, the maximum value is
9223372036854775807.

batchSizeBatchSize

The revision number of the batch. This is used when
one set of documents fails. The complete set can be
resent using a new revision number. The revision num-
ber must be increasing, but does not have to be sequen-
tial.

The BatchRevision is numeric, the maximum value is
9223372036854775807.

batchRevisionBatchRevision

This indicator type attribute is set to true when a system
that is sending a batch determines that it will not finish.
The receiving system is notified that any documents
received as a part of this batch must be discarded.

The BatchAbortIndicator value is either ‘true’ or ‘false’.

abortIndicatorBatchAbortIndi-
cator

For example, publishing daily balance updates through SourceSystemGLMovement BOD. Often you
must split the BOD. It is assumed that the tenant is ‘acme’, the accounting entity is 10 and the location
is 1. The subsequence BODIDs is one of these options:

• Infor-nid:acme:10:1_A:0?SourceSystemGLMovement&verb=Sync&batchSe
quence=1&batchID=lid://infor.sunsystems.5:1

• Infor-nid:acme:10:1_A:0?SourceSystemGLMovement&verb=Sync&batchSe
quence=2&batchID=lid://infor.sunsystems.5:1

Infor ION Development Guide–Cloud Edition | 47

ION Connecting Considerations

• Infor-nid:acme:10:1_A:0?SourceSystemGLMovement&verb=Sync&batchSe
quence=3&batchID=lid://infor.sunsystems.5:1&batchSize=3

Publish historical data
Due to the synchronous nature of data in an event-oriented architecture, you can only keep data in
sync after your application is integrated with ION.

You may need to consider how to share historical data with downstream systems that are interested
to receive. This concerns the data which may not be amended in your system anymore. We recommend
that you provide a facility to publish historical data when the application is ION-enabled. For example,
driven by end users at time when required. This can happen more than once due to online offline
deployment.

To keep the consistence of message ID and variation ID your system must publish BODs after historical
data is published.

Message reprocessing
When BODs are delivered to your application inbox/outbox tables, it is the application’s responsibility
to consume or reject them due to circumstances. There are options to set intervals in ION Desk to
clean up inbox/outbox tables. You can develop your own clean up scheme considering BODs volume
and storage.

In case of processing inbound BODs fails for business data integrity, we recommend that you develop
a user-driven retry mechanism. For example, workflow integration rather than mandating business
users to submit the document for approval again. For technical reasons, it makes better sense if the
system admin is able to resubmit the same BOD to get through. Same with consuming transaction
BODs, ledger entry or purchase order quite often a retry is mandatory to sort out interdependency of
BODs delivery.

When developing system automatic retry, it is important to retry at reasonable intervals and end the
process if the problem is not solved. This is to avoid deadlock of your integration engine focusing on
a few BODs and leaving the Inbound BODs queue too long to process.

Performance
Good performance is a key to success especially in an event driven integration architecture. Sensible
plan and proof of concept testing with real business scenarios will eliminate substantial issues with
customer implementation after releasing your ION integration.

Infor ION Development Guide–Cloud Edition | 48

ION Connecting Considerations

Depending on the integration requirements we highly recommend that you take performance into
account during the start and design phase.

Infor ION Development Guide–Cloud Edition | 49

ION Connecting Considerations

Chapter 9: Adopting Event Management, Workflow,
or Pulse

When the connection to ION is completed, you can adopt Event Management, Workflow or Pulse.

With Event Management you can generate alerts for business data that you publish. The alerts are
created by an event monitor that checks the Sync BODs that are published against a user-defined rule.

Workflow enables you to execute workflows, either based on published business data or by explicitly
starting a workflow. In Workflow you can implement decisions and bring tasks and notifications to users.

You can also create alerts, notifications, or tasks directly from your application. In that case you do not
use Event Management or Workflow, but you directly request the Pulse engine to create an alert,
notification, or task.

Alerts, notifications and tasks
A task is sent if the user is expected to execute a defined task. The user must complete the task in
Infor Ming.le using the Tasks widget in the Homepages or in the Infor Ming.le Mobile application. To
complete a task, the user specifies data or selects a specific action, such as 'Approve' or 'Reject', when
closing the task.

An alert means a user must be notified of an exception. It indicates that something happened that is
extraordinary or that is not in line with how the business should run. The user can decide whether to
take action and then close the alert.

A notification is a message to one or more users 'for your information'.

Note: Some differences exist between the features that ION offers for tasks, alerts and notifications:
• Tasks have a priority (High, Medium or Low). Alerts and notifications do not have an explicit priority.
• The names (labels) of the data elements for an alert are not translatable. For tasks and notifications

created from a workflow the labels are translatable.
• In alerts, drill-back links are automatically generated based on document references. For tasks

and notifications that are created from a workflow, drill-back links can be configured. To configure
these drill-back links, use drill-back views that are retrieved from the uploaded drill-back view sets.

Infor ION Development Guide–Cloud Edition | 50

Adopting Event Management, Workflow, or Pulse

When to use Pulse, Event Management and Workflow
Use Pulse if you want to create an alert, notification, or task directly. Your application is fully in control.
The application logic decides whether and when to create an alert, notification, or task and also defines
all aspects such as the data to be included and the user(s) who will receive the item. For tasks, your
application also follows up if required when the task is completed.

Use Event Management if you need alerting, but you want to delegate the monitoring to ION. You do
not have to change your application; the only requirement is that you publish Sync BODs for the business
data owned in your application. You can define rules in ION event monitors. Customers using your
application can adapt the rules to their needs or define new rules. ION monitors the BODs published
from your application and creates alerts in Pulse when required.

Use Workflow if you want to model a business process (or allow your customers to model a business
process) outside your application. Tasks and notifications are created automatically based on the
modeled process. If required, the user interacts with your application based on the tasks that the user
receives.

The following chapters describe:

• How to start workflows from an application.
• How to create alerts, tasks, or notifications from an application.

Infor ION Development Guide–Cloud Edition | 51

Adopting Event Management, Workflow, or Pulse

Chapter 10: Starting a workflow from an application

This section describes the details of the Workflow BOD and its Process/Acknowledge messages.

You can trigger workflow definitions in various ways. To trigger a workflow instance from an application,
you can use these methods:

• Indirectly, by creating an activation policy or monitor that evaluates Sync BODs that are sent by
this application. When a workflow instance that is started by this method completes and has output
parameters. The activation policy creates a Process BOD of the same noun as the monitored Sync
BOD. This Process BOD is sent to the originating application with the values resulting from the
workflow execution.

• Directly, by sending a ProcessWorkflow BOD. When a workflow instance is started by this
method, an AcknowledgeWorkflow is sent initially to inform that the initiation of the workflow
was successful. When the workflow is completed, another AcknowledgeWorkflow BOD, which
contains the values of the workflow output parameters, is sent back to the application.

For details about how to model and start a workflow and start workflow from activation policy and
document flow, see the Infor ION Desk User Guide.

Starting a workflow through ProcessWorkflow
Create a workflow definition using the ION Desk workflow modeling. The actual process as modeled
inside the workflow can be changed later, but your application depends on the interface of the workflow
definition. The interface consists of the workflow name, the input parameters and the output parameters.
To start a workflow, publish a ProcessWorkflow BOD, including the name of the workflow definition
to be started and the values for the input parameters. This starts the workflow.

See this diagram:

Infor ION Development Guide–Cloud Edition | 52

Starting a workflow from an application

You receive an AcknowledgeWorkflow BOD when the workflow is created. You receive also an
AcknowledgeWorkflow BOD when the status of the workflow changes. For example, the workflow
is completed or cancelled. If the workflow is completed, the BOD contains the values for the output
parameters of the workflow. You can use the result in your application.

Note the difference between Workflow and Pulse BOD if you use Process verb. For Pulse BODs you
receive only one Acknowledge BOD. For Workflow BOD you receive multiple Acknowledge BODs
to be updated with different statues of the workflow task(s). If you started a workflow but the workflow
is not relevant anymore, you can cancel it. To cancel a workflow, publish a ProcessWorkflow BOD.

See this diagram:

In this case you receive an AcknowledgeWorkflow BOD when the workflow is canceled. Specifications
of how to create and cancel Workflow BOD to ION are discussed later.

To start a workflow, add this action code: ProcessWorkflow/DataArea/Process/ActionCrite
ria/ActionExpression/@actionCode.

This table shows the elements you can use in the noun instance, ProcessWorkflow/DataArea/Work
flow:

NoteElement

Required. This is the name of the workflow definition as modeled
in ION.

WorkflowDefinitionCode

Properties are required if the workflow model has input parameters.
You must specify values for the input parameters that are required.

Property/NameValue

Infor ION Development Guide–Cloud Edition | 53

Starting a workflow from an application

Do not use other elements, such as DocumentID and Status, when initiating a new workflow instance.
These elements are determined by the Pulse engine.

The resulting AcknowledgeWorkflow BODs contain the actionCode with these possible values:

• "Accepted", when processing the request was successful.
• "Modified", to inform about an update in the workflow definition execution.
• "Rejected", if the request could not be processed.

This table shows the elements that are included in the AcknowledgeWorkflow/Workflow section
if the actionCode is "Accepted":

NoteElement

Unique identification of the workflow instance in this ION installation.DocumentID/ID

Value is "Initial" to indicate the workflow was started.Status/Code

The name of the workflow started.WorkflowDefinitionCode

This table shows the elements that are included in the AcknowledgeWorkflow/Workflow section
if the actionCode is "Modified":

NoteElement

Unique identification of the workflow instance in this ION installation.DocumentID/ID

Can be "Cancelled", "Failed", or "Completed".Status/Code

Available for Status/Code "Cancelled" or "Failed".Status/Reason

The name of the workflow that was canceled, failed, or completed.WorkflowDefinitionCode

Only available if the Status/Code is "Completed" and the workflow
has output parameters. The Properties contain the resulting values
of the workflow output parameters.

Property/NameValue

This table shows the elements that are included in the AcknowledgeWorkflow/Workflow section
if the actionCode is "Rejected":

NoteElement

Value is "Failed".Status/Code

The reason for failure.Status/Reason

Canceling a workflow through ProcessWorkflow
To cancel a workflow, the action code, ProcessWorkflow/DataArea/Process/ActionCrite
ria/ActionExpression/@actionCode, must be "Change".

This table shows the elements you can use in the noun instance, ProcessWorkflow/DataArea/Work
flow:

Infor ION Development Guide–Cloud Edition | 54

Starting a workflow from an application

NoteElement

Required. Unique identification of the workflow
instance that must be canceled.

DocumentID/ID

Required. This is the name of the workflow defi-
nition as modeled in ION.

WorkflowDefinitionCode

Must be "Cancelled".Status/Code

The resulting AcknowledgeWorkflow BOD contains the actionCode="Accepted" if cancelation was
performed, or actionCode="Rejected" if the cancelation was not possible. The other elements included
are similar to those described for AcknowledgeWorkflow BODs.

See Starting a workflow through ProcessWorkflow on page 52.

Workflow BOD details
The definitions of ProcessWorkflow and AcknowledgeWorkflow are available on this site:

http://schema.infor.com

This table shows the elements that exist in these documents:

NoteElement

Unique identification of the workflow instance in
this ION installation.

DocumentID/ID

Can have these values:
• "Initial": the request to start a new workflow

instance was performed successfully.
• "Completed": the workflow instance complet-

ed successfully.
• "Cancelled": the workflow instance was can-

celed.
• "Failed": the execution of the workflow in-

stance failed.

Status/Code

Available for Status/Code "Cancelled" or "Failed".Status/Reason

This is the name of the workflow definition as
modeled in ION.

WorkflowDefinitionCode

Infor ION Development Guide–Cloud Edition | 55

Starting a workflow from an application

http://schema.infor.com

NoteElement

Values of the workflow input and output parame-
ters.

Must match the data type of the parameter.

When included in a ProcessWorkflow with action-
Code="Add", these are input parameters.

When included in an AcknowledgeWorkflow with
actionCode="Completed", these are output pa-
rameters.

Property/NameValue

The name of the parameter as defined in the
workflow model.

Property/NameValue/@name

One of the pre-defined types that you can map
to the workflow parameter types.

These types are supported:

• IndicatorType
• NumericType
• IntegerNumericType
• StringType
• DateType
• DateTimeType

See the table below for an overview of mapping
to workflow parameter types.

Property/NameValue/@type

TreeProperty contains data for a workflow struc-
ture.

In the first TreeNode, these attributes are used:

• ID = 1
• NodeName = the name of the structure as

used in workflow
• One or more NodeProperty elements with

fields from the root of the structure

The first node does not have a ParentID.

TreeProperty/TreeNode

The unique identifier for this tree node within the
document. It must only be unique within the doc-
ument.

TreeProperty/TreeNode/ID

The ID of the node that is the parent of the current
node within the tree.

TreeProperty/TreeNode/ParentID

Must be identical to the level name from the
workflow structure.

TreeProperty/TreeNode/NodeName

Values for the fields from the workflow structure
situated on the level corresponding to the current
node.

TreeProperty/TreeNode/NodeProperty/NameVal-
ue

The name of the field as defined in the workflow
structure.

TreeProperty/TreeNode/NodeProperty/
NameValue/@name

Infor ION Development Guide–Cloud Edition | 56

Starting a workflow from an application

NoteElement

The type of the field as defined in the workflow
structure. These types are supported:

• IndicatorType
• DateType
• NumericType
• IntegerNumericType
• StringType
• DateTimeType

TreeProperty/TreeNode/NodeProperty/
NameValue/@type

This table shows all available workflow parameter types and how these types are mapped to the
Property types in the Workflow BOD:

NotesProperty TypeWorkflow Parameter Type

Represents a true or false val-
ue.

Possible values: true, false, 0,
1.

IndicatorTypeBoolean

The value is expected to be part
of the Codes modeled in the
Workflow Modeler, but no valida-
tion is enforced.

StringTypeCode

The date part of a date/time
stamp.

DateTypeDate

The date part and time part of
a date/time stamp, separated
by "T" and ending with Z (is al-
ways UTC).

DateTimeTypeDateTime

A numeric type with a floating
precision. The Decimal data
type in Workflow corresponds
to the double data type and is a
double-precision 64-bit IEEE
754 floating point.

NumericTypeDecimal

Is displayed as a clickable link
in Infor Ming.le.

StringTypeHyperlink

A numeric type that represents
a whole number.

IntegerNumericTypeInteger

A string value of up to 4000
characters in length.

StringTypeString

Infor ION Development Guide–Cloud Edition | 57

Starting a workflow from an application

Sample workflow BODs

Sample ProcessWorkflow to start a workflow

<ProcessWorkflow xmlns="http://schema.infor.com/InforOAGIS/2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLoca
tion="http://schema.infor.com/InforOAGIS/2 http://schema.infor.com/Trunk/In
forOAGIS/BODs/Developer/ProcessWorkflow.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" releaseID="11.1" version
ID="2.10.0">
 <ApplicationArea>
 <Sender>
 <LogicalID>lid://infor.test.app1</LogicalID>
 <ComponentID>ComponentID0</ComponentID>
 <TaskID>TaskID0</TaskID>
 <AuthorizationID>AuthorizationID0</AuthorizationID>
 </Sender>
 <CreationDateTime>2013-10-20T13:20:00Z</CreationDateTime>
 <BODID>infor-nid:infor:::Sample_NestedTree:1?Workflow&verb=Pro
cess</BODID>
 </ApplicationArea>
 <DataArea>
 <Process>
 <TenantID>infor</TenantID>
 <ActionCriteria>
 <ActionExpression actionCode="Add"/>
 </ActionCriteria>
 </Process>
 <Workflow>
 <Status>
 <Code>Initial</Code>
 </Status>
 <WorkflowDefinitionCode>SimpleDataEntryTest</WorkflowDefinitionCode>

 <Property>
 <!-- true, false, 1 or 0 -->
 <NameValue name="aBoolean" type="IndicatorType">true</NameValue>
 </Property>
 <Property>
 <NameValue name="aCode" type="StringType">Approved</NameValue>
 </Property>
 <Property>
 <NameValue name="aDate" type="DateType">2012-12-10</NameValue>
 </Property>
 <Property>
 <NameValue name="aDateTime" type="DateTimeType">2012-12-
10T10:00:00Z</NameValue>
 </Property>
 <Property>
 <NameValue name="aDecimal" type="NumericType">453.99</NameValue>
 </Property>

Infor ION Development Guide–Cloud Edition | 58

Starting a workflow from an application

 <Property>
 <NameValue name="anInteger" type="IntegerNumericType">250</NameValue>

 </Property>
 <Property>
 <NameValue name="aLink" type="StringType">http://www.inforx
treme.com</NameValue>
 </Property>
 <Property>
 <NameValue name="aString" type="StringType">This is a test
string</NameValue>
 </Property>
 <TreeProperty>
 <TreeNode>
 <ID>1</ID>
 <NodeName>Building</NodeName>
 <NodeProperty>
 <NameValue name="BuildingName" type="StringType">Office</NameValue>

 </NodeProperty>
 <NodeProperty>
 <NameValue name="NumberOfFloors" type="IntegerNumericType">1</NameVal
ue>
 </NodeProperty>
 </TreeNode>
 <TreeNode>
 <ID>2</ID>
 <ParentID>1</ParentID>
 <NodeName>Floor</NodeName>
 <NodeProperty>
 <NameValue name="FloorName" type="StringType">Ground
Floor</NameValue>
 </NodeProperty>
 </TreeNode>
 </TreeProperty>
 </Workflow>
 </DataArea>
</ProcessWorkflow>

Sample AcknowledgeWorkflow when the request was
accepted

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<AcknowledgeWorkflow releaseID="2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLoca
tion="http://schema.infor.com/InforOAGIS/2 http://schema.infor.com/2.5.0/In
forOAGIS/BODs/Developer/AcknowledgeWorkflow.xsd" xmlns="http://schema.in
for.com/InforOAGIS/2">
 <ApplicationArea>
 <Sender>

Infor ION Development Guide–Cloud Edition | 59

Starting a workflow from an application

 <LogicalID>infor.engine.workflow</LogicalID>
 <ComponentID>ION_Workflow_Engine</ComponentID>
 </Sender>
 <CreationDateTime>2013-10-24T08:18:18.380Z</CreationDateTime>
 </ApplicationArea>
 <DataArea>
 <Acknowledge>
 <TenantID>Infor</TenantID>
 <OriginalApplicationArea>
 <Sender>
 <LogicalID>lid://infor.test.app1</LogicalID>
 <ComponentID>ComponentID0</ComponentID>
 <TaskID>TaskID0</TaskID>
 <AuthorizationID>AuthorizationID0</AuthorizationID>
 </Sender>
 <CreationDateTime>2013-10-20T13:20:00Z</CreationDateTime>
 <BODID>infor-nid:infor:::Sample_NestedTree:1?Workflow&verb=Pro
cess</BODID>
 </OriginalApplicationArea>
 <ResponseCriteria>
 <ResponseExpression actionCode="Accepted"/>
 </ResponseCriteria>
 </Acknowledge>
 <Workflow>
 <DocumentID>
 <ID>20</ID>
 </DocumentID>
 <Status>
 <Code>Initial</Code>
 </Status>
 <WorkflowDefinitionCode>SimpleDataEntryTest</WorkflowDefinition
Code>
 </Workflow>
 </DataArea>
</AcknowledgeWorkflow>

Infor ION Development Guide–Cloud Edition | 60

Starting a workflow from an application

Chapter 11: Creating alerts, tasks, or notifications from
an application

The Pulse engine is the component that handles alerts, tasks, and notifications as generated by Event
Management and Workflow.

But any application that is connected to ION can create alerts, tasks, and notifications in Pulse directly.
This is done by sending and receiving Pulse BODs such as. PulseAlert, PulseTask, PulseNoti
fication.

This section explains how to create and manage alerts, tasks, and notifications through Pulse BODs.

From an application you can perform these actions:

• Create alerts, tasks, or notifications.
• Receive status updates for an alert, task, or notification.
• Cancel a previously created alert, task, or notification.

Creating alerts, tasks, and notifications is not limited to applications that can send or receive BODs.
For example, you can use the corresponding type of connection point to create alerts through a JMS
message queue or by reading from a database.

Creating alerts, tasks, or notifications
Use PulseTask if the user is expected to perform a defined task. Use PulseAlert to notify a user
of an exception. The user can decide whether to take action and then close the alert. Use PulseNoti
fication to send a message 'for your information' to one or more users.

The diagram shows how tasks, alerts and notifications are created by sending Pulse BODs. In the
diagram a task (PulseTask) is shown, but the process is the same for notifications (PulseNotifi
cation) and alerts (PulseAlert).

Infor ION Development Guide–Cloud Edition | 61

Creating alerts, tasks, or notifications from an application

By publishing a ProcessPulseTask BOD you can create a new task in Pulse. The task is created in
Pulse and an AcknowledgePulseTask is sent in reply.

Creating tasks from an application
To create tasks from an application:

1 Update your application so it can send ProcessPulseTask and to handle incoming Acknowl
edgePulseTask BODs. The ProcessPulseTask BOD must have action code ‘Add’ to create
a new task.

2 Ensure your application is connected to ION. In the connection point, select ProcessPulseTask
as a document to send.

3 Your application connection point must be used in at least one active document flow. If this is not
the case, you can create a specific document flow containing an activity for your application and
activate that flow.

4 In IFS, configure users, distribution groups, and contacts for people that must receive alerts. For
users, ensure the 'Person' is filled with the value that is sent by the application as the person ID
of a system user. For contacts, ensure the ‘Contact ID’ is filled with the same value that is sent by
the application as the person ID of a non-system user. For distribution groups, the application must
send the distribution group name as defined in IFS.

For PulseAlert and PulseNotification BODs, the procedure is the same.

Infor ION Development Guide–Cloud Edition | 62

Creating alerts, tasks, or notifications from an application

Important notes
Regarding the document flow, be aware that Pulse is an 'engine' inside ION. It is not a normal application
for which you can create a connection point. Therefore, the configuration differs from a normal
configuration. Normally, a document flow is created from A to B where you select the documents to be
sent. This selection can be a subset of the documents sent by connection point A and received by
connection point B.

If an application connection point that can publish ProcessPulseAlert, ProcessPulseTask, or
ProcessPulseNotification, is used in an active document flow, these BODs are delivered directly
to Pulse. Similarly, if the connection point is configured to receive SyncPulseAlert, SyncPulseTask,
or SyncPulseNotification, it receives those BODs without selecting them in a document flow.

Therefore, you cannot use mapping, content-based routing, or filtering in a document flow for
PulseAlert, PulseTask, and PulseNotification.

For details on how to define connection points and document flows, see the Infor ION Desk User
Guide.

Creating an alert
When creating an alert, the action code (ProcessPulseAlert/DataArea/Process/ActionCri
teria/ ActionExpression/@actionCode) must be "Add".

This table shows the elements you can use in the noun instance, ProcessPulseAl
ert/DataArea/PulseAlert:

NoteElement

RequiredDescription

OptionalNote

OptionalAlertDetail and child elements

Define at least one DistributionPerson or
DistributionGroup.

For a DistributionPerson, do not specify the
Distribution/ID, because it is generated by
Pulse.

DistributionPerson or DistributionGro
up

Do not use other elements, such as DocumentID, CreationDateTime, and Status, when creating an
alert. These elements are determined by the Pulse engine.

This table shows the elements that are included in the resulting AcknowledgePulseAlert BOD:

NoteElement

Available if actionCode = "Accepted".

If the alert cannot be created successfully, the a
ctionCode is "Rejected".

DocumentID/ID

Infor ION Development Guide–Cloud Edition | 63

Creating alerts, tasks, or notifications from an application

Note: We recommend that you include a unique value for the BODID. You can use that to process the
AcknowledgePulseAlert because the BODID is available again in the original application area.

If the alert could not be created, you receive an AcknowledgePulseAlert BOD with action code
'Rejected'.

If the AcknowledgePulseAlert BOD can not be delivered, a Confirm BOD is generated.

Creating a task
When creating a task, the action code (ProcessPulseTask/DataArea/Process/ActionCriteria/
ActionExpression/@actionCode) must be "Add".

This table shows the elements you can use in the noun instance (ProcessPulse
Task/DataArea/PulseTask):

NoteElement

Optional, default is MEDIUM.Priority

RequiredDescription

OptionalNote

OptionalParameter and child elements

Define at least one DistributionPerson or
DistributionGroup.

For a DistributionPerson, do not specify the
Distribution/ID, because it is generated by
Pulse.

DistributionPerson or DistributionGro
up

Do not use other elements, such as DocumentID, CreationDateTime, and Status, when creating a task.
These elements are determined by the Pulse engine.

This table shows the elements that are included in the resulting AcknowledgePulseTask BOD:

NoteElement

Available if actionCode = "Accepted".

If the task cannot be created successfully, the a
ctionCode is "Rejected".

DocumentID/ID

Note: We recommend that you include a unique value for the BODID. You can use that to process the
AcknowledgePulseTask because the BODID is available again in the original application area.

If the task could not be created, you receive an AcknowledgePulseTask BOD with action code
'Rejected'.

If the AcknowledgePulseTask BOD can not be delivered, a Confirm BOD is generated.

Infor ION Development Guide–Cloud Edition | 64

Creating alerts, tasks, or notifications from an application

Creating a notification
When creating a notification, the action code (ProcessPulseNotification/DataArea/ Pro
cess/ActionCriteria/ActionExpression/@actionCode) must be "Add".

This table shows the elements you can use in the noun instance (ProcessPulseNotifica
tion/DataArea/PulseNotification):

NoteElement

RequiredDescription

OptionalParameter and child elements

Define at least one DistributionPerson or
DistributionGroup.

For a DistributionPerson, do not specify the
Distribution/ID, because it is generated by
Pulse.

DistributionPerson or DistributionGro
up

Do not use other elements, such as DocumentID, CreationDateTime, and Status, when creating
a notification. These elements are determined by the Pulse engine.

This table shows the elements that are included in the resulting AcknowledgePulseNotification
BOD:

NoteElement

Available if actionCode = "Accepted".

If the notification cannot be created successfully,
the actionCode is "Rejected".

DocumentID/ID

Note: We recommend that you include a unique value for the BODID. You can use that to process the
AcknowledgePulseNotification because the BODID is available again in the original application
area.

If the notification could not be created, you receive an AcknowledgePulseNotification BOD with
action code 'Rejected'.

If the AcknowledgePulseNotification BOD can not be delivered, a Confirm BOD is generated.

Receiving status updates on alerts, tasks, or
notifications
The Pulse engine sends Sync BODs for PulseAlert, PulseTask and PulseNotification to
inform others about status changes in alerts, tasks and notifications.

This diagram shows a task (PulseTask), but the process is the same for notifications and alerts.

Infor ION Development Guide–Cloud Edition | 65

Creating alerts, tasks, or notifications from an application

Pulse sends a SyncPulseTask when a new task is created and when the status is changed. For
example, if a user picks up the task and sets it to done, a SyncPulseTask is sent. The application
can handle this BOD to be informed about the new status. If a task is canceled through ION Desk by
an administrator, a SyncPulseTask is also sent.

A Sync BOD is sent in these situations:

• A new task, alert or notification is created.
• An item is assigned, reassigned or unassigned.
• An item is redistributed.
• The status of an item is changed to Done or Canceled.

Pulse may not send Sync BODs for all changes to an item, such as changing a parameter value, adding
a note or adding an attachment.

It is not required to handle Sync BODs when you send out Process BODs. The Acknowledge BOD
tells you whether the Process request was handled successfully. When sending a ProcessPulseNo
tification, that is probably all you want to know. When creating a task, you want to know whether
the task was completed and what was the outcome of the task. For example, in case of an approval
task for a requisition you want to know whether the user approved or rejected the requisition. In that
case you can receive the SyncPulseTask BODs to be informed of the task status.

Infor ION Development Guide–Cloud Edition | 66

Creating alerts, tasks, or notifications from an application

It can happen that an Acknowledge Pulse BOD or a Sync Pulse BOD could be delivered to the
subscribing application. In that case, a Confirm BOD is generated. The Confirm BOD contains the
original Acknowledge or Sync document, and can be re-submitted later from the ION Desk UI

Receiving status updates
To receive status updates for tasks:

1 Update your application so it can handle incoming SyncPulseTask BODs. The
SyncPulseAlert/DataArea/PulseTask/Source element contains the originator of the alert, so you
can use this element to ignore BODs that are not relevant for your application.

2 Ensure your application is connected to ION. In the connection point, select SyncPulseTask as a
document to receive.

3 Your application connection point must be used in at least one active document flow. If this is not
the case, you can create a specific document flow containing an activity for your application and
activate that flow.

For PulseAlert and PulseNotification BODs, the procedure is the same.

The SyncPulseAlert, SyncPulseTask, and SyncPulseNotification BODs include all elements that are
relevant for the alert, task, or notification.

For the available elements, see Pulse BOD details on page 70.

Canceling alerts, tasks, or notifications
In some cases, you must cancel an alert, task, or notification before the user handled it. For example,
a requisition approval task is created, but now the requestor cancels the requisition. In this case you
must also cancel the task in Pulse.

This diagram shows a task (PulseTask), but the process is the same for notifications and alerts.

Infor ION Development Guide–Cloud Edition | 67

Creating alerts, tasks, or notifications from an application

If you created a task by sending a ProcessPulseTask with action code 'Add', you receive an
AcknowledgePulseTask which contains the ID of the task. You can use this ID to send a new
ProcessPulseTask request to cancel the task.

Receiving status updates
To receive status updates for tasks:

1 Update your application so it can handle incoming SyncPulseTask BODs. The
SyncPulseAlert/DataArea/PulseTask/Source element contains the originator of the alert, so you
can use this element to ignore BODs that are not relevant for your application.

2 Ensure your application is connected to ION. In the connection point, select SyncPulseTask as a
document to receive.

3 Your application connection point must be used in at least one active document flow. If this is not
the case, you can create a specific document flow containing an activity for your application and
activate that flow.

For PulseAlert and PulseNotification BODs, the procedure is the same.

The SyncPulseAlert, SyncPulseTask, and SyncPulseNotification BODs include all elements that are
relevant for the alert, task, or notification.

For the available elements, see Pulse BOD details on page 70.

Infor ION Development Guide–Cloud Edition | 68

Creating alerts, tasks, or notifications from an application

Canceling an alert
When canceling an alert, the action code (ProcessPulseAlert/DataArea/Process/ActionCriteria/
ActionExpression/@actionCode) must be "Change".

This table shows the elements you must use in the noun instance
(ProcessPulseAlert/DataArea/PulseAlert):

NoteElement

Use the DocumentID/ID as provided in the Acknowledge BOD when
the item was created.

DocumentID/ID

Use value 'CANCELLED'.Status/Code

When processing the cancel request in the Pulse engine, an Acknowledge BOD is sent in reply. If the
item was canceled successfully, the actionCode of the BOD is "Accepted". If the item could not be
canceled, the actionCode is "Rejected".

You can only cancel an alert when:

• The alert is open. If the user completed the alert, you can no longer cancel it.
• The alert is created by a ProcessPulseAlert BOD. If the alert is created by a Monitor you cannot

cancel the alert using a ProcessPulseAlert BOD.

Canceling a task
When canceling a task, the action code (ProcessPulseTask/DataArea/Process/ActionCriteria/
ActionExpression/@actionCode) must be "Change".

This table shows the elements you must use in the noun instance
(ProcessPulsetask/DataArea/PulseTask):

NoteElement

Use the DocumentID/ID as provided in the Ac-
knowledge BOD when the item was created.

DocumentID/ID

Use value 'CANCELLED'.Status/Code

When processing the cancel request in the Pulse engine, an Acknowledge BOD is sent in reply. If the
item was canceled successfully, the actionCode of the BOD is "Accepted". If the item could not be
canceled, the actionCode is "Rejected".

You can only cancel a task when:

• The task is open. If the user completed the task, you can no longer cancel it.
• The task is created by a ProcessPulseTask BOD. If the task is created by a Workflow you cannot

cancel the task using a ProcessPulseTask BOD.

Infor ION Development Guide–Cloud Edition | 69

Creating alerts, tasks, or notifications from an application

Canceling a notification
When canceling a notification, the action code (ProcessPulseNotification/DataArea/Process/
ActionCriteria/ActionExpression/@actionCode) must be "Change".

This table shows the elements you must use in the noun instance
(ProcessPulseNotification/DataArea/PulseNotification):

NoteElement

Use the DocumentID/ID as provided in the Ac-
knowledge BOD when the item was created.

DocumentID/ID

Use value 'CANCELLED'.Status/Code

When processing the cancel request in the Pulse engine, an Acknowledge BOD is sent in reply. If the
item was canceled successfully, the actionCode of the BOD is "Accepted". If the item could not be
canceled, the actionCode is "Rejected".

You can only cancel a notification when:

• The notification is open. If the user completed the task, you can no longer cancel it.
• The notification is created by a ProcessPulseNotification BOD. If the notification is created by a

Workflow you cannot cancel the notification using a ProcessPulseNotification BOD.

Pulse BOD details
The definition of ProcessPulseAlert, AcknowledgePulseAlert, and SyncPulseAlert is available on this
site:

http://schema.infor.com

This section contains an explanation on the elements that exist in these documents.

PulseAlert
This table shows the elements in PulseAlert:

NoteElement

Unique identification of the alert.DocumentID/ID

Date when the alert was created in Pulse.CreationDateTime

Date when the alert was last modified.LastModificationDateTime

Infor ION Development Guide–Cloud Edition | 70

Creating alerts, tasks, or notifications from an application

http://schema.infor.com

NoteElement

Status of the alert. Values are:
• NEW - The initial status for a new item.
• ASSIGNED - Assigned to a specific user.
• UNASSIGNED - No longer assigned to a

specific user.
• DONE - Completed.
• CANCELLED - canceled by an administrator

(through ION Desk) or by the application
(through a ProcessPulseAlert BOD).

Status/Code

This indicator has value true if an alert is escalat-
ed and false otherwise. This element is only
supported in Sync messages.

IsEscalated

The number of levels in the organizational hierar-
chy to which the alert is escalated. If the alert is
not escalated the value is 0. Otherwise the Esca-
lationLevel is greater than 0.

EscalationLevel

Date and time when the alert is due. This element
is shown only if a due date was configured in the
monitor that created this alert. This element is
supported only in the Sync messages.

DueDateTime

The description that is displayed to the end user
as the summary of the alert. You can use hash
tags to make searching easier. For example:

Late shipment for #sales order 25
 of customer #acme

To define a category, use ## at the end of the
message.

To include values from the alert details, use
square brackets around the parameter labels.

To use the actual characters for square brackets,
use an escape character: \[or \]

Description

The language code of the Description field.

For details, see the notes in the "Supported fea-
tures" section.

Description/@languageID

Notes that are added by people who handled the
alert. Notes can be added, but cannot be modified
or removed.

Note

The ID (personId) of the person who added the
note.

Note/@userID

Infor ION Development Guide–Cloud Edition | 71

Creating alerts, tasks, or notifications from an application

NoteElement

Full name of the person who added the note.

This attribute is required when a Note is added
through a ProcessPulseAlert BOD.” / “Pro-
cessPulseTask BOD.” / “ProcessPulseNotification
BOD.

Note/@author

The date/time at which the note was created.Note/@entryDateTime

Identification of the note within the alert.Note/@noteID

BOD: the alert was created by sending a Pro-
cessPulseAlert BOD.

MONITOR: the alert was created by an event
monitor.

Source/Type

If Type=BOD: the logical ID of the sender of the
ProcessPulseAlert BOD. For example, lid://
infor.erp.myerp

If Type is MONITOR: the name of the monitor
that created the alert. For example, MyMonitor.

Source/Name

Details of the alert that are displayed to the user.
Each AlertDetail group contains document refer-
ences or trees. For example, an AlertDetail can
contain one or more document references fol-
lowed by a tree containing data for an order and
its order lines.

AlertDetail

The sequence number of the AlertDetail group.
This is used for ordering the alert details when
displaying them to a user.

AlertDetail/@sequence

Infor ION Development Guide–Cloud Edition | 72

Creating alerts, tasks, or notifications from an application

NoteElement

Reference to another business document. The
format is the same as the standard DocumentRe-
ference, but additionally it has a sequence at-
tribute.

For example:

<PulseDocumentReference>
 type="SalesOrder" se
quence="1">

 <DocumentID>
 <ID accountingEntity="infor"
 location="bvld"
 lid="lid://infor.ln.440">
 ORD0015236</ID>
 <RevisionID>123</RevisionID>
 </DocumentID>
</PulseDocumentReference>

The RevisionID tag is only used if the document
referred from this alert contains a RevisionID.

AlertDetail/PulseDocumentReference

Sequence number to indicate the sequence in
which the document references must be dis-
played to the user when showing the alert details.

AlertDetail/PulseDocumentReference/@sequence

Node in the data tree. Alert data is a tree structure
to enable multi-level data objects, such as an or-
der header having order lines.

AlertDetail/TreeNode

If the tree node is a child of another node, the
sequence attribute defines the sequence of the
child nodes relative to their parent.

AlertDetail/TreeNode/@sequence

Identification for this tree node within the alert.AlertDetail/TreeNode/ID

Omitted if the tree node is the top-level node in
the tree. Otherwise it contains the ID of the parent
node. The parent node must exist within the same
AlertDetail. In an AlertDetail, all TreeNodes ex-
cept one will have a ParentID.

AlertDetail/TreeNode/ParentID

The name of the node. This name is displayed
to the user.

For example: Sales Order.

AlertDetail/TreeNode/NodeName

Infor ION Development Guide–Cloud Edition | 73

Creating alerts, tasks, or notifications from an application

NoteElement

A parameter in a tree node, which contains a
data element that can be displayed to the user
who handles the alert. Alert parameters are al-
ways read-only.

For example:

<TreeNodeParameter sequence="1">
 <Name>OrderNumber</Name>
 <Value>12345</Value>
 <DataType
 listID="Pulse
Datatypes">STRING
 </DataType>
 <Label>Order Number</Label>
</TreeNodeParameter>

AlertDetail/TreeNode/TreeNodeParameter

The name that identifies the parameter within the
TreeNode. This element is required for each pa-
rameter.

AlertDetail/TreeNode/TreeNodeParameter/Name

The (serialized) value of the parameter. The for-
matting depends on the DataType and is the
same as the formatting that is normally used in
BOD data elements.

AlertDetail/TreeNode/TreeNodeParameter/Value

The data type of the parameter. This element is
required for each parameter.

You can use these data types:

• STRING - a string value that is up to 4000
characters in length

• INTEGER - a numeric type that represents
a whole number

• DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

• BOOLEAN - represents a true or false value
• DATETIME - the date part and time part of

a date/time stamp separated by "T" and
ending with Z (is always UTC)

• TIME - the time part of a date/time stamp
• DATE - the date part of a date/time stamp
• DURATION - time interval, starting with P

followed by nM (minutes) or nH (hours) or
nD (days). For example, P2D3H.

AlertDetail/TreeNode/TreeNodeParame-
ter/DataType

Infor ION Development Guide–Cloud Edition | 74

Creating alerts, tasks, or notifications from an application

NoteElement

The label of the parameter that is used when
displaying the parameter to a user. This element
is required for each parameter.

AlertDetail/TreeNode/TreeNodeParameter/Label

The user to which the alert is currently assigned.AssignedPerson

Reference to a person.AssignedPerson/PersonReference

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive).

AssignedPerson/PersonReference/IDs/ID

Name of the person.AssignedPerson/PersonReference/Name

Value is true if the person is a User in IFS.

Value is false if the person is a Contact in IFS.

AssignedPerson/PersonReference/Syste-
mUserIndicator

Person in the distribution list for the alert. If the
alert is not assigned to a person, one of these
persons can pick it up.

DistributionPerson

Identification of the distribution person within the
alert

DistributionPerson/ID

Reference to a person.DistributionPerson/PersonReference

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive). This element is required for each distribution
person.

DistributionPerson/PersonReference/IDs/ID

Name of the person.DistributionPerson/PersonReference/Name

Value is true if the person is a User in IFS.

Value is false if the person is a Contact in IFS.

This element is required for each distribution
person.

DistributionPerson/PersonReference/Syste-
mUserIndicator

Specify one or more distribution groups to which
the alert must be distributed. This element can
be used in addition to the DistributionPerson ele-
ment, or instead of the DistributionPerson ele-
ment.

DistributionGroup

Identifier of the distribution group as defined in
Infor Ming.le User Management. The alert is dis-
tributed to all users that are members of this
group at the time the alert is created.

DistributionGroup/Name

Description of the distribution group. This element
is optional and is not used to determine the distri-
bution list.

DistributionGroup/Description

Infor ION Development Guide–Cloud Edition | 75

Creating alerts, tasks, or notifications from an application

NoteElement

Describe the language code of the description
element. This attribute is optional and is not used
for the distribution functionality.

DistributionGroup/Description/@languageID

Note: The DistributionGroup element is supported only in the ProcessPulseAlert BOD. A SyncPulseAlert
BOD can be sent after the creation of the alert. In that case, the distribution list of the alert is described
using a DistributionPerson element for each user from the distribution group.

PulseTask
This table shows the elements in PulseTask:

NoteElement

Unique identification of the task.DocumentID/ID

Date when the task was created in Pulse.CreationDateTime

Date when the task was last modified.LastModificationDateTime

Status of the task. Values are:
• NEW - The initial status for a new item.
• ASSIGNED - Assigned to a specific user.
• UNASSIGNED - No longer assigned to a

specific user.
• DONE - Completed.
• CANCELLED - canceled by an administrator

(through ION Desk) or by the application
(through a ProcessPulseTask BOD).

Status/Code

This indicator has value true if a task is escalated
and false otherwise. This element is only support-
ed in Sync messages.

IsEscalated

The number of levels in the organizational hierar-
chy to which the alert is escalated. If the task is
not escalated the value is 0. Otherwise the Esca-
lationLevel is greater than 0.

EscalationLevel

The priority of the task. Values are:
• HIGH
• MEDIUM
• LOW

Priority

Date and time when the task is due. This element
is shown only if a due date was configured in the
workflow task properties. This element is support-
ed only in the Sync messages.

DueDateTime

Infor ION Development Guide–Cloud Edition | 76

Creating alerts, tasks, or notifications from an application

NoteElement

The description that is displayed to the end user
as the summary of the task. You can use hash
tags to make searching easier. For example:

Approve #requisition 25

To define a category, use ## at the end of the
message.

To include values from the alert details, use
square brackets around the parameter labels.

To use the actual characters for square brackets,
use an escape character: \[or \]

Description

The language code of the Description field.

For details, see the notes in the "Supported fea-
tures" section.

Description/@languageID

Notes that are added by people who handled the
alert. Notes can be added, but cannot be modified
or removed.

Note

The ID (personId) of the person who added the
note.

Note/@userID

Full name of the person who added the note.

This attribute is required when a Note is added
through a ProcessPulseAlert BOD.” / “Pro-
cessPulseTask BOD.” / “ProcessPulseNotification
BOD.

Note/@author

The date/time at which the note was created.Note/@entryDateTime

Identification of the note within the task.Note/@noteID

If this attribute is missing or empty "", this note is
a current note of this Task.

If the @type attribute is filled with a string other
than "", this note is a propagated Note, which was
specified in a previous Task of the same work-
flow.

Note/@type

BOD: the task was created by sending a Pro-
cessPulseTask BOD.

WORKFLOW: the task was created by a work-
flow.

Source/Type

Infor ION Development Guide–Cloud Edition | 77

Creating alerts, tasks, or notifications from an application

NoteElement

If Type=BOD: the logical ID of the sender of the
ProcessPulseTask BOD. For example, lid://
infor.erp.myerp

If Type is WORKFLOW: the name of the workflow
definition that created the task. For example, My
Workflow.

Source/Name

Data of the task that is displayed to the user and
optionally can be updated by the user.

For example:

<Parameter sequence="1">
 <Name>OrderNumber</Name>
 <Value>12345</Value>
 <DataType
 listID="Pulse
Datatypes">STRING</DataType>
 <Label>Order Number</Label>
 <ReadOnlyIndicator>true</ReadOn
lyIndicator>
</Parameter>

Parameter

The sequence number of the parameter. This is
used for ordering the parameters when displaying
them to a user. You are only allowed to use this
attribute if there are no elements of type
TreeParameter in the document.

Parameter/@sequence

You must specify this element in combination
with TreeParameter/Sequence. This element is
used to determine the order in which Parameters
and TreeParameters are displayed to the user.

Parameter/Sequence

The name that identifies the parameter within the
task. This element is required for each parameter.

Parameter/Name

The (serialized) value of the parameter. The for-
matting depends on the DataType and is the
same as the formatting that is normally used in
BOD data elements.

Parameter/Value

Infor ION Development Guide–Cloud Edition | 78

Creating alerts, tasks, or notifications from an application

NoteElement

The data type of the parameter. This element is
required for each parameter.

You can use these data types:

• STRING - a string value that is up to 4000
characters in length

• INTEGER - a numeric type that represents
a whole number

• DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

• BOOLEAN - represents a true or false value
• DATETIME - the date part and time part of

a date/time stamp separated by "T" and
ending with Z (is always UTC)

• TIME - the time part of a date/time stamp
• DATE - the date part of a date/time stamp

Parameter/DataType

The label of the parameter that is used when
displaying the parameter to a user. This element
is required for each parameter.

Parameter/Label

The language code of the Label field.

For details, see the notes in the "Supported fea-
tures" section.

Parameter/Label /@languageID

Indicates whether the parameter is read-only:
• If the value is true, the user is not allowed

to change the value.
• If the value is false, the user can change

the value when handling the item.

This element is required for each parameter.

Parameter/ReadyOnlyIndicator

Restriction to the data type.

This element can contain the name of a code as
defined in ION Desk. The values that the user
can specify are then restricted to the specified
code.

Parameter/Restriction

The TreeParameter consists of a TreeDefinition
and TreeNodes specified after the TreeDefinition.
The TreeDefinition defines a complex data
structure. The TreeNodes define the data value
for the structure. The TreeDefinition and the
TreeNodes must be consistent.

TreeParameter

Infor ION Development Guide–Cloud Edition | 79

Creating alerts, tasks, or notifications from an application

NoteElement

Indicates the sorting sequence in which TreePa-
rameters and Parameters must be displayed to
the user in the task. If one Sequence is defined,
all Parameters must specify a Sequence element.

TreeParameter/Sequence

Definition for the data structure contained in the
TreeParameter. Definition includes several unique
TreeNodes with their ID, ParentID, NodeName,
and TreeNodeParameters.

TreeParameter/TreeDefinition

A node in a tree using a parent relationship and
containing the definition of the properties required
for the node.

TreeParameter/TreeDefinition/TreeNode

Indicates the sequence of the node within the
TreeParameter. You must specify the Sequence
for all TreeNodes if this element is specified for
the root TreeNode. The ordering of the TreeN-
odes within the structure is based on the specified
Sequence. If the Sequence is not specified for
the root TreeNode, the structure is sorted based
on the xml.

TreeParameter/TreeDefinition/TreeNode/Se-
quence

The unique identifier for this tree node within this
definition of a TreeParameter.

TreeParameter/TreeDefinition/TreeNode/ID

The ID of the node that is the parent of this node
within the tree. The root TreeNode does not have
a ParentID.

TreeParameter/TreeDefinition/TreeNode/ParentID

This is the unique identification of a tree node.TreeParameter/TreeDefinition/TreeNode/Node-
Name

The label of the parameter that is used when
showing the parameter to a user. You must
specify at least one label. You can specify several
labels, each with a different languageID for
translated labels.

TreeParameter/TreeDefinition/TreeNode/Label

The language code of the Label field. For details,
see notes from Supported Features.

TreeParameter/TreeDefinition/TreeNode/Label
/@languageID

The TreeNodeParameter defines a property
within a TreeNode level. TreeNodeParameters
are optional. Values for these properties are
specified in the TreeNodes that follow the
TreeDefinition.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter

Indicates the sequence of the TreeNodeParame-
ter within the TreeNode.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Sequence

The name of the TreeNodeParameter is used to
identify this property in the tree node instances
to specify its value.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Name

Infor ION Development Guide–Cloud Edition | 80

Creating alerts, tasks, or notifications from an application

NoteElement

The data type of the associated value. You can
use these data types:
• STRING - a string value that is up to 4000

characters in length
• INTEGER - a numeric type that represents

a whole number
• DECIMAL - a numeric type that has a floating

precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

• BOOLEAN - represents a true or false value
• DATETIME - the date part and time part of

a date/time stamp separated by "T" and
ending with Z (is always UTC)

• TIME - the time part of a date/time stamp
• DATE - the date part of a date/time stamp

TreeParameter/TreeDefinition/TreeNode/TreeN-
odeParameter/DataType

The label of the node that is used when displaying
it to a user. You must specify at least one label.
You can specify several labels, each with a differ-
ent languageID for translated labels.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label

The language code of the Label field. For details,
see notes from Supported Features.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label/@languageID

A node in a tree using a parent relationship and
containing properties required for the node and
their values.

TreeParameter/TreeNode

The unique identifier for this tree node within this
TreeParameter.

TreeParameter/TreeNode/ID

The ID of the node that is the parent of this node
within the tree definition.

TreeParameter/TreeNode/ParentID

The unique identification of a tree node. This
name must match a node name from the
TreeDefinition. Several TreeNode instances with
the same NodeName can exist.

TreeParameter/TreeNode/NodeName

List of properties for this TreeNode.TreeParameter/TreeNode/TreeNodeParameter

The property name that must match with a prop-
erty defined for this TreeNode in the TreeDefini-
tion.

TreeParameter/TreeNode/TreeNodeParame-
ter/Name

The value for this tree node property. The value
must be consistent with the data type specified
in the tree definition.

TreeParameter/TreeNode/TreeNodeParame-
ter/Value

Infor ION Development Guide–Cloud Edition | 81

Creating alerts, tasks, or notifications from an application

NoteElement

Parameter that holds the actions that a user can
do when closing the task.

For example:

<ActionParameter>
 <Name>ApprovalResult</Name>
 <Value>Rejected</Value>
 <Action sequence="1">
 <Value>Approved</Value>
 <Label>Approve</Label>
 </Action>
 <Action sequence="2">
 <Value>Rejected</Value>
 <Label>Reject</Label>
 </Action>
</ActionParameter>

An action parameter must have at least one ac-
tion.

ActionParameter

The name that identifies the action parameter
within the task. This element is required for each
action parameter.

ActionParameter/Name

The (serialized) value of the action parameter.ActionParameter/Value

The value that is assigned to the action parameter
when the user selects this action.

ActionParameter/Action/Value

The label used when displaying the action button
to the user. This element is required for each
action parameter. Even though it is technically
possible to use a string of maximum length of
255 characters, we recommend that you use
short labels that are suitable for action buttons.

ActionParameter/Action/Label

The language code of the Label field. For details,
see notes from Supported Features.

ActionParameter/Action/Label /@languageID

The user to which the notification is currently as-
signed. A notification is initially distributed to all
users having a DistributionPerson defined in the
notification.

AssignedPerson

Reference to a person.AssignedPerson/PersonReference

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive).

AssignedPerson/PersonReference/IDs/ID

Name of the person.AssignedPerson/PersonReference/Name

Value is true if the person is a User in IFS.

Value is false if the person is a Contact in IFS.

AssignedPerson/PersonReference/Syste-
mUserIndicator

Infor ION Development Guide–Cloud Edition | 82

Creating alerts, tasks, or notifications from an application

NoteElement

Person in the distribution list for the task. The
task is distributed to all users for which a Distribu-
tionPerson is included.

DistributionPerson

Identification of the distribution person within the
distribution list of the task.

DistributionPerson/ID

Reference to a person.DistributionPerson/PersonReference

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive). This element is required for each distribution
person.

DistributionPerson/PersonReference/IDs/ID

Name of the person.DistributionPerson/PersonReference/Name

Value is true if the person is a User in IFS.

Value is false if the person is a Contact in IFS.

This element is required for each distribution
person.

For PulseTask, the value must always be true.

DistributionPerson/PersonReference/Syste-
mUserIndicator

Specify one or more distribution groups to which
the task must be distributed. This element can
be used in addition to the DistributionPerson ele-
ment, or instead of the DistributionPerson ele-
ment.

DistributionGroup

Identifier of the distribution group as defined in
Infor Ming.le User Management. The task is dis-
tributed to all users that are members of this
group at the time the task is created.

DistributionGroup/Name

Description of the distribution group. This element
is optional and is not used to determine the distri-
bution list.

DistributionGroup/Description

Describe the language code of the description
element. This attribute is optional and is not used
for the distribution functionality.

DistributionGroup/Description/@languageID

Note: The DistributionGroup element is supported only in the ProcessPulseTask BOD. A SyncPulseTask
BOD can be sent after the creation of the task. In that case, the distribution list of the task is described
using a DistributionPerson element for each user from the distribution group.

PulseNotification
This table shows the elements in PulseNotification:

Infor ION Development Guide–Cloud Edition | 83

Creating alerts, tasks, or notifications from an application

NoteElement

Unique identification of the notification.DocumentID/ID

Date when the notification was created in Pulse.CreationDateTime

Date when the notification was last modified.LastModificationDateTime

Status of the notification. Values are:
• ASSIGNED - The initial status for a new item.

The notification is assigned to each of the
distribution persons.

• DONE - Completed.
• CANCELLED - canceled by an administrator

(through ION Desk) or by the application
(through a ProcessPulseNotification BOD).

Status/Code

The description that is displayed to the end user
as the summary of the notification. You can use
hash tags to make searching easier. For example:

#Requisition 25 is approved

To define a category, use ## at the end of the
message.

To include values from the alert details, use
square brackets around the parameter labels.

To use the actual characters for square brackets,
use an escape character: \[or \]

Description

The language code of the Description field.

For details, see the notes in the "Supported fea-
tures" section.

Description/@languageID

Propagated notes that are added by users who
worked on Tasks from the same workflow. You
cannot add or remove notes from a Notification.
This field is only applicable for Sync.PulseNotifi-
cation for notifications created by Workflow.

Note

The ID (personId) of the person who added the
note.

Note/@userID

Full name of the person who added the note.

This attribute is required when a Note is added
through a ProcessPulseAlert BOD.” / “Pro-
cessPulseTask BOD.” / “ProcessPulseNotification
BOD.

Note/@author

The date/time at which the note was created.Note/@entryDateTime

Identification of the note within the notification.Note/@noteID

Infor ION Development Guide–Cloud Edition | 84

Creating alerts, tasks, or notifications from an application

NoteElement

BOD: the notification was created by sending a
ProcessPulseNotification BOD.

WORKFLOW: the notification was created by a
workflow.

Source/Type

If Type=BOD: the logical ID of the sender of the
ProcessPulseNotification BOD. For example, li
d://infor.erp.myerp

If Type is WORKFLOW: the name of the workflow
definition that created the notification. For exam-
ple, MyWorkflow.

Source/Name

Data of the notification that is displayed to the
user. Notification parameters are always read-
only.

For example:

<Parameter sequence="1">
 <Name>OrderNumber</Name>
 <Value>12345</Value>
 <DataType
 listID="Pulse
Datatypes">STRING</DataType>
 <Label>Order Number</Label>
</Parameter>

Parameter

The sequence number of the parameter. This is
used for ordering the parameters when displaying
them to a user. It is only allowed to use this at-
tribute if there are no elements of type TreePa-
rameter in the document.

Parameter/@sequence

You must specify this element in combination
with TreeParameter/Sequence. This element is
used to determine the order in which Parameters
and TreeParameters are displayed to the user.

Parameter/Sequence

The name that identifies the parameter within the
notification. This element is required for each
parameter.

Parameter/Name

The (serialized) value of the parameter. The for-
matting depends on the DataType and is the
same as the formatting that is normally used in
BOD data elements.

Parameter/Value

Infor ION Development Guide–Cloud Edition | 85

Creating alerts, tasks, or notifications from an application

NoteElement

The data type of the parameter. This element is
required for each parameter.

You can use these data types:

• STRING - a string value that is up to 4000
characters in length

• INTEGER - a numeric type that represents
a whole number

• DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

• BOOLEAN - represents a true or false value
• DATETIME - the date part and time part of

a date/time stamp separated by "T" and
ending with Z (is always UTC)

• TIME - the time part of a date/time stamp
• DATE - the date part of a date/time stamp

Parameter/DataType

The label of the parameter that is used when
displaying the parameter to a user. This element
is required for each parameter.

Parameter/Label

The language code of the Label field.

For details, see the notes in the "Supported fea-
tures" section.

Parameter/Label /@languageID

The TreeParameter consists of a TreeDefinition
and TreeNodes specified after the TreeDefinition.
The TreeDefinition defines a complex data
structure. The TreeNodes specify the data value
for the structure. The TreeDefinition and the
TreeNodes must be consistent.

TreeParameter

Indicates the sorting sequence in which TreePa-
rameters and Parameters must be displayed to
the user in the notification. If one Sequence is
specified, all the Parameters must specify a Se-
quence element.

TreeParameter/Sequence

Definition for the data structure contained in the
TreeParameter. This definition includes several
unique TreeNodes with their ID, ParentID,
NodeName, and TreeNodeParameters.

TreeParameter/TreeDefinition

A node in a tree using a parent relationship and
containing the definition of the properties required
for the node.

TreeParameter/TreeDefinition/TreeNode

Infor ION Development Guide–Cloud Edition | 86

Creating alerts, tasks, or notifications from an application

NoteElement

Indicates the sequence of the node within the
TreeParameter. The Sequence must be specified
for all the TreeNodes if this element is specified
for the root TreeNode. The ordering of the
TreeNodes within the structure is based on the
specified Sequence. If the Sequence is not
specified for the root TreeNode, the structure is
sorted based on the xml.

TreeParameter/TreeDefinition/TreeNode/Se-
quence

The unique identifier for this tree node within this
definition of a TreeParameter.

TreeParameter/TreeDefinition/TreeNode/ID

The ID of the node that is the parent of this node
within the tree. The root TreeNode does not have
a ParentID.

TreeParameter/TreeDefinition/TreeNode/ParentID

This is the unique identification of a tree node.TreeParameter/TreeDefinition/TreeNode/Node-
Name

The label of the parameter that is used when
displaying the parameter to a user. You must
specify at least one label. You can specify several
labels, each with a different languageID for
translated labels.

TreeParameter/TreeDefinition/TreeNode/Label

The language code of the Label field.

For details, see the notes in the "Supported fea-
tures" section.

TreeParameter/TreeDefinition/TreeNode/Label
/@languageID

Defines a property within a TreeNode level.
TreeNodeParameters are optional. Values for
these properties are specified in the TreeNodes
that follow the TreeDefinition.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter

Indicates the sequence of the TreeNodeParame-
ter within the TreeNode.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Sequence

The name of the TreeNodeParameter is used to
identify this property in the tree node instances
to specify its value.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Name

Infor ION Development Guide–Cloud Edition | 87

Creating alerts, tasks, or notifications from an application

NoteElement

The data type of the associated value. You can
use these data types:
• STRING - a string value that is up to 4000

characters in length
• INTEGER - a numeric type that represents

a whole number
• DECIMAL - a numeric type that has a floating

precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

• BOOLEAN - represents a true or false value
• DATETIME - the date part and time part of

a date/time stamp separated by "T" and
ending with Z (is always UTC)

• TIME - the time part of a date/time stamp
• DATE - the date part of a date/time stamp

TreeParameter/TreeDefinition/TreeNode/TreeN-
odeParameter/DataType

The label of the node that is used when it is dis-
played to a user. You must specify at least one
label. You can specify several labels, each with
a different languageID for translated labels.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label

The language code of the Label field.

For details, see the notes in the "Supported fea-
tures" section.

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label/@languageID

A node in a tree using a parent relationship and
containing properties required for the node and
their values.

TreeParameter/TreeNode

The unique identifier for this tree node within this
TreeParameter.

TreeParameter/TreeNode/ID

The ID of the node that is the parent of this node
within the tree definition.

TreeParameter/TreeNode/ParentID

The unique identification of a tree node. This
name must match a node name from the
TreeDefinition. Several TreeNode instances with
the same NodeName can exist.

TreeParameter/TreeNode/NodeName

List of properties for this TreeNode.TreeParameter/TreeNode/TreeNodeParameter

The property name that must match with a prop-
erty specified for this TreeNode in the TreeDefini-
tion.

TreeParameter/TreeNode/TreeNodeParame-
ter/Name

The value for this tree node property. The value
must be consistent with the data type defined in
the tree definition.

TreeParameter/TreeNode/TreeNodeParame-
ter/Value

Infor ION Development Guide–Cloud Edition | 88

Creating alerts, tasks, or notifications from an application

NoteElement

The user to which the notification is currently as-
signed. When a user closes the notification, he
or she is removed from the list of assigned per-
sons.

AssignedPerson

Reference to a person.AssignedPerson/PersonReference

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive).

AssignedPerson/PersonReference/IDs/ID

Name of the person.AssignedPerson/PersonReference/Name

Value is true if the person is a User in IFS.

Value is false if the person is a Contact in IFS.

AssignedPerson/PersonReference/Syste-
mUserIndicator

Person in the distribution list for the notification.
The notification is send to each of the distribution
persons in parallel.

DistributionPerson

Identification of the distribution person within the
notification.

DistributionPerson/ID

Reference to a person.DistributionPerson/PersonReference

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive). This element is required for each distribution
person.

DistributionPerson/PersonReference/IDs/ID

Name of the person.DistributionPerson/PersonReference/Name

Value is true if the person is a User in IFS.

Value is false if the person is a Contact in IFS.

This element is required for each distribution
person.

DistributionPerson/PersonReference/Syste-
mUserIndicator

Specify one or more distribution groups to which
the notification must be distributed. This element
can be used in addition to the DistributionPerson
element, or instead of the DistributionPerson ele-
ment.

DistributionGroup

Identifier of the distribution group as defined in
Infor Ming.le User Management. The notification
is distributed to all users that are members of this
group at the time the notification is created.

DistributionGroup/Name

Description of the distribution group. This element
is optional and is not used to determine the distri-
bution list.

DistributionGroup/Description

Describe the language code of the description
element. This attribute is optional and is not used
for the distribution functionality.

DistributionGroup/Description/@languageID

Infor ION Development Guide–Cloud Edition | 89

Creating alerts, tasks, or notifications from an application

Note: The DistributionGroup element is supported only in the ProcessPulseNotification BOD. A
SyncPulseNotification BOD can be sent after the creation of the notification. In that case, the distribution
list of the notification is described using a DistributionPerson element for each user from the distribution
group.

Supported features
Most features of Pulse are supported when creating an alert, task, or notification through a process
BOD. This table shows which features of Pulse are supported when creating an alert, task, or notification
through a Process BOD.

Process
PulseNotification

Process
PulseTask

Process
PulseAlertFeature

YesYesYesMessage (Description)

N/AYesN/APriority

YesYesYesDefined sequence of
data elements

YesYesYesHierarchy of data

YesYesEqual to namesData labels

YesYesYesRead-only values

N/AYesN/AEditable values

N/AYesN/AData-type dependent
controls

N/AYesN/AAction buttons

YesYesYesDistribution to (Pulse)
users

YesN/AYesDistribution to external
contacts (e-mail)

YesYesYesDistribution to groups

N/ANoNoEscalation policies

No

See note 1.

No

See note 1.

No

See note 1.

Translations

Yes

See note 2.

Yes

See note 2.

Yes

See note 2.

Locales

Yes

See note 3.

Yes

See note 3.

N/AHyperlinks

Infor ION Development Guide–Cloud Edition | 90

Creating alerts, tasks, or notifications from an application

Process
PulseNotification

Process
PulseTask

Process
PulseAlertFeature

N/AN/AYesDocument references
with drill-back

N/AYesYesAttach notes

Yes

See note 4.

Yes

See note 4.

Yes

See note 4.

Add attachments

N/AN/ANoStart workflow from
alert

Notes:

1 Translations are supported for Description and Label fields, in combination with the languageID
attribute. An occurrence of a Description or Label field that does not have the languageID attribute
is called the 'default value' and is required. Optionally, you can add additional occurrences of these
fields, called 'translations', each having a languageID attribute filled with a language. At runtime,
Infor Ming.le matches the display language from the user's regional settings with the language
code from the translations and shows the corresponding string. If there is no match, the default
value is displayed.

Language codes are the codes used by Microsoft.

See also: ISO 639 http://en.wikipedia.org/wiki/ISO_639

2 Parameter values are displayed in Infor Ming.le using the user's local settings, such as date and
time format, time zone, and number format. This depends on the parameter's data type. Data in
the Description element is not formatted by ION, but displayed as is. For example when the
Description contains: "On 24-12-2012T14:50:40Z the total amount was 1,234.56".

3 For tasks and notifications, you can use a hyperlink as a parameter value. In that case, use data
type STRING. A string is presented as a hyperlink to the Infor Ming.le user if it starts with 'http://'
or 'https://'.

4 You can use attachments in Infor Ming.le widgets, also for items that are created using a Process
BOD. But you cannot include them in a BOD. For tasks and notifications, you can include hyperlinks
in the BOD.

Infor ION Development Guide–Cloud Edition | 91

Creating alerts, tasks, or notifications from an application

http://en.wikipedia.org/wiki/ISO_639

Chapter 12: Creating custom metadata

The Data Catalog component is a utility component used by ION Desk.

This section explains the Data Catalog contents and how you can add metadata for your own objects
or for extensions on standard application objects.

The Data Catalog contains metadata on objects that are sent through the ION Service. During the
installation of ION, the Data Catalog is filled with the latest version of the Infor metadata.

If you only use standard objects from Infor, you do not have to modify the Data Catalog contents. You
can use custom application objects in ION Connect, in a monitor, or in a workflow activation policy.
Add the metadata for those custom application objects to the Data Catalog.

The functionality to add custom metadata in the Data Catalog is intended only for customer-specific
metadata. Infor metadata should not be included as custom metadata.

Data Catalog contents
The Data Catalog contains noun metadata information organized in libraries. A library can contain one
or more nouns. Libraries contain standard objects, which can either be global or application-specific.
You can use the available noun metadata from all libraries in ION Desk models.

Custom objects can be of type BOD, also referred to as "custom nouns", or of type ANY, DSV, or
JSON.

At each library level, each tenant level, and each noun level, a patch number is maintained. Only the
latest noun metadata for both standard and custom nouns is stored in the Data Catalog.

For each noun, custom or standard, this information is stored:

• Noun Name
• Noun XSD - the XML schema definition for this noun, flattened
• Other metadata, such as the patch number (a kind of version number), the list of XPaths to key

fields in the noun, the list of verbs supported by this noun, and the relationships between this noun
and other nouns.

For custom objects of type ANY, only the object name is stored.

For custom objects of type JSON, the JSON schema definition for each object name is stored.

For custom objects of type DSV, the DSV schema definition for each object name is stored.

Infor ION Development Guide–Cloud Edition | 92

Creating custom metadata

Before customizing the Data Catalog
Before you customize the Data Catalog, note these points:

• Contact Infor for information on services to assist you when developing custom objects.
• The Data Catalog contains these files:

• XML Schema (XSD) files and XML files to describe objects of type BOD
• JSON Schema files to describe objects of type JSON and DSV (delimiter-separated values)
To customize the Data Catalog metadata, you must understand and adapt those files.

• If you add files to the Data Catalog, you can use customized nouns in ION Desk only. To use the
customized nouns in ION Service, these nouns must be adopted by Infor applications or other
applications. The definitions in the Data Catalog must always match the objects that are sent or
received by applications that are connected to ION.

• In the Data Catalog XSD files, conventions are used. These are the most important conventions:
• All elements use the type-attribute and therefore refer to named types.
• All types, complex and simple, are explicit and have "Type" as a post fix. For example, Status

Type.
• The elements in a complexType containing a sequence or choice are always a ref to a single

element with a named type.

• Note:
• In customized XSDs, do not use unions such as <xs:union memberTypes="xs:string

xs:dateTime"/> or binary data types such as xs:hexBinary.
• If you create a customized version of a standard noun, it must be compatible with the standard.

If you use a new name for the customized noun, such as MySalesOrder, compatibility with the
standards is not required. When you create a version of your custom noun, it must be backwards
compatible with previous versions.

Object Naming Conventions
Objects of all types are registered by name.

These constraints apply:

• The object name must be unique across all custom objects types and standard nouns and application
specific nouns. For example, if the InforOagis library is imported, a custom object with the name
Sync.SalesOrder must not exist.

• The object name is case-preserving, but case-insensitive. If 'MyDocument' exists, you cannot
create 'MyDOCUMENT' except by overwriting the existing one.

• The maximum length for an object name is 100 characters.
• The object names for the metadata files cannot exceed 255 characters. This is including the path

in the export file, for example: JSON/myObject/myObject.schema.json

Infor ION Development Guide–Cloud Edition | 93

Creating custom metadata

Custom objects of type ANY
You can use objects of type ANY in ION File Connector and IMS Connector.

A custom object of type ANY is only defined by its name.

An object name may contain these characters:

• Any standard letter in any language
• Numbers 0-9
• Underscore (_)
• Hyphen (-)
• Period (.)

Defining a custom object of type ANY
1 To create an object of type ANY, prepare this folder structure for the import:

FOLDER: ANY

+-- FOLDER: <object name>

+---- FILE: <object name>.xml

The <object name>.xml file is empty for objects of type ANY.

2 To import a ZIP file containing one or more definitions for objects of type ANY, use the Custom
Objects page in ION Desk.

See the Infor ION Desk User Guide.

Custom objects of type JSON
You can use objects of type JSON in ION File Connector, IMS Connector, and ION AnySQL Connector.

A custom object of type JSON is defined by its name and a JSON schema file.

An object name may contain these characters:

• Any standard letter in any language
• Numbers 0-9
• Underscore (_)
• Hyphen (-)
• Period (.)

Infor ION Development Guide–Cloud Edition | 94

Creating custom metadata

Defining a custom object of type JSON
1 To create an object of type JSON, prepare this folder structure for the import:

FOLDER: JSON

+-- FOLDER: <object name>

+---- FILE: <object name>.schema.json

+---- FILE: <object name>.properties.json

2 To import a ZIP file containing one or more definitions for objects of type JSON, use the Custom
Objects page in ION Desk.

See the Infor ION Desk User Guide.

These validations are performed upon import:

• The object name must be unique and must comply to the object naming restrictions mentioned
above.

• If an object with the same name is already registered with another type, the import fails.
• If an object with the same name is already registered with type JSON, the imported schema

overwrites the existing schema.
• The <object name>.schema.json schema file is validated as follows:

• There must be only one JSON schema file for a given object name.
• The schema file must be valid JSON according to JSON schema definition, version draft-06.
• The schema file must use UTF-8 encoding.
• The “anyOf” keyword is not allowed.
• The “oneOf” keyword is supported only to describe a type that can be null.

• The <object name>.properties.json file is optional and can contain additional metadata
properties for the object.

For information on how to define this file, see Defining additional object metadata properties
on page 105 and Additional properties file on page 105.

Newline-delimited JSON
If your data object uses newline-delimited JSON, you must specify that in your object schema.

1 Specify the schema for a single object.

All objects in a single data object must have the same schema.

2 Include a property called x-stream and set it to true.

This code is a newline-delimited JSON schema example:

{
 "$schema": "http://json-schema.org/draft-06/schema#",
 "x-stream":true,
 "type": "object",
 "properties": {
 "field1": {

Infor ION Development Guide–Cloud Edition | 95

Creating custom metadata

 "type": "integer"
 },
 "field2": {
 "type": "string"
 }
 }

This code shows the JSON data that corresponds with the schema example:

{"field1":123,"field2":"Some text"}
{"field1":456,"field2":"Another text"}
{"field1":789,"field2":"More text to be added"}

Validations that are performed on import for newline-delimited JSON follow the same rules as
conventional JSON.

Custom objects of type DSV
You can use objects of type DSV in ION File Connector and IMS Connector. DSV stands for
Delimiter-Separated Values.

When you register a DSV object schema in the Data Catalog, it is assigned a subtype. Based on the
separator value that is provided in the schema, one of these subtypes is assigned:

• CSV - comma-separated values
• TSV - tab-separated values
• PSV - pipe-separated values
• Other

A custom object of type DSV is defined by its name and a schema file.

An object name may contain these characters:

• Any standard letter in any language
• Numbers 0-9
• Underscore (_)
• Hyphen (-)
• Period (.)

Defining a custom object of type DSV
1 To create an object of type DSV, prepare this folder structure for the import:

FOLDER: DSV

+--FOLDER: <object name>

+----FILE: <object name>.schema.json

Infor ION Development Guide–Cloud Edition | 96

Creating custom metadata

+----FILE: <object name>.properties.json

2 These validations are performed upon import:

• The object name must be unique and must comply to the object naming restrictions mentioned
above.

• If an object with the same name is already registered with another type, the import fails.
• If an object with the same name is already registered with type DSV, the imported schema

overwrites the existing schema.
• The <object name>.schema.json schema file is validated as follows:

• There must be only one DSV schema for a given object name.
• The schema file must use UTF-8 encoding.
• The schema file must contain a “dialect” property. This property defines the format of the

delimited data object.

The dialect property must contain a “separator” property, which defines the character that
separates the values in a row within the data object.

• The “properties” element in the schema file should list the fields, in order, that are expected
to be found in the DSV data object. This section of the schema must be valid JSON
according to schema definition, version draft-06.
• The “anyOf” keyword is not allowed.
• The “oneOf” keyword is supported only to describe a type that can be null.

• The <object name>.properties.json file is optional and can contain additional metadata
properties for the object.

For information on how to define this file, see Defining additional object metadata properties
on page 105 and Additional properties file on page 105.

This code is an example of a DSV schema definition:

{
 "title": "myDelimitedFile",
 "description": "DSV Schema for myDelimitedFile",
 "dialect": {
 "separator": ",",
 "skipLines": 1,
 “headerLine”: 1,
 "enclosingCharacter": "\""
 },
 "properties": {
 "Code": {
 "description": "Customer code",
 "type": "string",
 "maxLength": 10
 },
 "Customer": {
 "description": "Customer name",
 "type": "string",
 "maxLength": 100
 },
 "PubDatetime": {
 "description": "Publication timestamp",
 "type": "string",

Infor ION Development Guide–Cloud Edition | 97

Creating custom metadata

 "format": "date"
 }
 }
 }

Dialect properties for DSV objects
. This table shows the dialect properties that are supported for DSV objects.

DescriptionTypeDialect property

The delimiter character that separates the values in a
row of data. The value of the separator should be de-
fined as follows for the different delimited file types:
• Comma-separated (CSV): "separator":","
• Tab-separated (TSV): "separator":"\t"
• Pipe-separated (PSV): "separator":"|"

Other separator values are allowed, but these must be
single-character separators. For example, double pipes
(||) are not supported.

Required

stringseparator

Indicates the number of header rows to skip over at the
top of the file before reaching the actual data.

Optional

Note: For Compass (Data Lake Services) only, DSV
data objects are required to have a single header line
containing the column names. skipLines is always
assumed to be 1.

integerskipLines

Indicates the line number that contains the column
headers for the data object. This value must be less
than or equal to the value of skipLines.

Optional

Note: For Compass (Data Lake Services) only, DSV
data objects are required to have a single header line
containing the column names. headerLine is always
assumed to be 1.

integerheaderLine

The character that identifies the start and end of a value.
If two consecutive enclosing characters are found in a
data object, they are interpreted as one, therefore es-
caping the enclosing character.

Optional

stringenclosingCharacter

The line separator is not specified in the metadata.

These characters are regarded as the end of a line, unless they are placed within enclosing characters:

Infor ION Development Guide–Cloud Edition | 98

Creating custom metadata

• A carriage return
• A line feed
• The combination of carriage return and line feed

The last line may or may not have a line separator.

The encoding is not specified in the metadata. It is always assumed to be UTF-8.

Metadata for localized strings
A localized string is a value that can be represented in different languages, with each value identified
in the context of a locale.

For example, if your data object contains a field called “description,” this field can have a string value
representing the English translation and another string value representing the Spanish translation. To
ensure that localized strings are properly handled within your data objects, you must define them as
localized in your object schema.

There are two methods in which you can define a property as localized in the object metadata.

Method 1
This method can only be used for JSON objects

To specify that a field or property contains localized data:

1 The localized property type must be set to “object”.

2 Include a Boolean property called x-localized and set it to true.

3 To define a maxLength for each of the localized strings, include a property called x-properties
MaxLength.

For information on localized strings in data objects, see Data object definitions for localized string
values on page 134.

4 Specify the maximum string length.

5 In your localized property definition, you must set the additionalProperties property to true.

Note: This property is not required within your definition since the default is true when this property
is not specified.

JSON schema example (Method 1)
This is a JSON Schema example for data objects containing localized strings, using method 1:

{
 "$schema":"http://json-schema.org/draft-06/schema#",

Infor ION Development Guide–Cloud Edition | 99

Creating custom metadata

 "type":"object",
 "properties":{
 "id":{
 "description":"The identifier",
 "type":"string",
 "maxLength":40
 },
 "description":{
 "description":"Additional information",
 "type":"object",
 "x-localized":true,
 "x-propertiesMaxLength":250,
 “additionalProperties”:true
 }
 }
}

Inside the data objects, localized properties must include the supported locales, along with their
associated string values.

This example of a data object relates to the JSON Schema example for data objects containing localized
strings.

{"id":"123","description":{"en_US":"car","es_ES":"coche"}}

The description property contains values for two locales; one for en_US and another for es_ES.

Method 2
This method can only be used for both JSON and DSV objects.

To specify that a field or property contains localized data:

1 Include a Boolean property called x-localized and set it to true.

2 Specify a maximum length for the localized strings using maxLength.

For information on localized strings in data objects, see Data object definitions for localized string
values on page 134.

DSV schema example (Method 2)
This is a DSV Schema example for data objects containing localized strings, using method 2:

{
 "title":"myDelimitedFile",
 “description”:”Sample schema for DSV with localized data”,
 "dialect":{
 “separator”:”,”,
 “skipLines”:1,

Infor ION Development Guide–Cloud Edition | 100

Creating custom metadata

 “enclosingCharacter”:”\””
 },
 "properties":{
 "id":{
 "description":"The identifier",
 "type":"string",
 "maxLength":40
 },
 "description":{
 "description":"Additional Information",
 "type":"string",
 "x-localized":true,
 "maxLength":250
 }
 }
}

Inside the data objects, localized properties must contain a separate column for each of the supported
locale codes. The locale code must be used as a suffix to the property name.

This example of a data object relates to the DSV Schema example for data objects containing localized
strings.

"id","description_en_US",”description_es_ES”
“123”,”car”,”coche”

Using datetime formats
When dates and times are included in JSON and DSV data objects, you should define them as such
in the object metadata. This makes it clear to applications that use the metadata that the values should
be interpreted as dates or times. Infor applications that use dates and times must follow the ISO 8601
RFC 3339 standard formats.

JSON Schema draft-06 supports these date and time formats for string instances:

• date-time
• date
• time

When you include dates and times in your objects, it is best practice to use “date-time”, in UTC, wherever
possible. Dates without a time and times without a date regularly occur in application data. Therefore,
you can also use the "date" or "time" formats alone.

Infor ION Development Guide–Cloud Edition | 101

Creating custom metadata

Standard format definitions

This table shows the standard format definitions:

Example dataExpected format in data ob-
ject

Metadata definition

"2017-07-04T14:08:43Z"

Or

"2017-07-04T14:08:43.123Z"

yyyy-MM-ddTHH:mm:ss[.S]Z“datetimeProperty”:{
 “type”:”string”,
 “format”:”date-time”
}

“2017-07-04”yyyy-MM-dd“dateProperty”:{
 “type”:”string”,
 “format”:”date”
}

“14:08:43”

Or

“14:08:43.123”

HH:mm:ss[.S]“timeProperty”:{
 “type”:”string”,
 “format”:”time”
}

This format is not supported by
Data Lake services when pro-
cessing data. Times without
dates are treated as string val-
ues.

Custom datetime formats
To define a datetime format that is not a standard supported by JSON schema draft-06, you can use
the “x-dateTimeFormat” custom property in your object metadata. This enables the interpretation of
data from third-party applications that do not adhere to the ISO 8601 RFC 3339 standard.

Custom format definitions

The tables in this section show the custom datetime formats that are currently supported. Any other
formats specified are not recognized by applications that use the metadata. All dates that are included
in a data object are assumed to be in UTC. The value that is provided for “x-dateTimeFormat” is
case-sensitive. Therefore, you must include this value in your metadata exactly as it is defined below.

Infor ION Development Guide–Cloud Edition | 102

Creating custom metadata

This table shows the metadata definitions:

DescriptionMetadata definition

Datetime in epoch milliseconds for integer in-
stances.

Example: 1537204639000

“epochMillisProperty”:{
 “type”:”integer”,
 “x-dateTimeFormat”:”epoch-millis”
}

American datetime format for string instances.

Examples:

“10/9/2017 12:42:01 PM”

or

“10/9/2017 12:42:01.139 PM”

“americanDateTimeProperty”:{
 “type”:”string”,
 “x-dateTimeFormat”:”M/d/yyyy
h:mm:ss[.S] a”
}

American date format for string instances.

Example: “6/23/2018”

“americanDateProperty”:{
 “type”:”string”,
 “x-dateTimeFormat”:”M/d/yyyy”
}

8-digit integer date for integer instances.

Example: 20180601

“integerDateProperty”:{
 “type”:”integer”,
 “x-dateTimeFormat”:”yyyyMMdd”
}

Three-character month for string instances, Ora-
cle format. This format always translates to a US
locale.

Example: “01-SEP-2018 14:08:23”

“threeCharMonthProperty”:{
 “type”:”string”,
 “x-dateTimeFormat”:”dd-MMM-yyyy
HH:mm:ss”
}

This table shows the tokens for datetime formats:

DescriptionToken

Month, one or two digits: 1-12M

Month, two digits: 01-12MM

3-character month: JAN, FEB, MAR, etc.MMM

Day of the month, one or two digits: 1-31D

Day of the month, two digits: 01-31dd

Year, four digits: 0001-9999yyyy

Hours, 24-hour, two digits: 00-23HH

Hours, 12-hour, one or two digits: 1-12h

Minutes, two digits: 00-59mm

Seconds, two digits: 00-59ss

Infor ION Development Guide–Cloud Edition | 103

Creating custom metadata

DescriptionToken

Optional fractional seconds, up to nine digits: 0-
999999999

[S]

AM/PM designator when using 12-hour format:
"AM", "am", "PM", or "pm"

a

Schema Property Order
Standard JSON Schema does not support specifying an order to the properties defined in a schema.
If the fields in your JSON or DSV data objects must be displayed in a specific order, you can use the
custom property “x-position” to define what that order must be. The value for "x-position" must be an
integer.

Example Schema:

{
 "$schema":"http://json-schema.org/draft-06/schema#",
 "title":"Schema Property Order",
 "description":"Sample schema to include property order",
 "type":"object",
 "properties":{
 "divisionName":{
 "type":"string",
 "maxLength":16,
 "x-position":2
 },
 "divisionId":{
 "type":"string",
 "maxLength":250,
 "x-position":1
 },
 "updateDateTime":{
 "type":"string",
 "format":"date-time"
 },
 "variationNumber":{
 "type":"integer"
 },
 "companyId":{
 "type":"string",
 "x-position":3
 }

 }

Since “x-position” is optional, it is not required to include it for all properties in the schema. It is up to
the applications using this metadata to determine how to handle the display of fields that do not include
an “x-position” value.

Infor ION Development Guide–Cloud Edition | 104

Creating custom metadata

Defining additional object metadata properties
When you import a schema, you can register additional metadata properties for objects of type JSON
and DSV with the Data Catalog.

To register these additional metadata properties, you require an object properties file.

This is an optional file that contains extra properties that are not defined in the object schema. The file
name must match the object name and have the .properties.json extension.

You can include these additional properties when you import the object schema in the Data Catalog
UI. For information on the file structure for including additional metadata properties, see the "Zip file
structure for import" section in the Infor ION Desk User Guide.

Additional properties file

Validation

The properties file is validated using this schema:

{
 "$schema": "http://json-schema.org/draft-06/schema#",
 "title": "Additional Object Metadata",
 "description": "Additional Object Metadata",
 "type": "object",
 "properties": {
 "IdentifierPaths": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "VariationPath": {
 "type": "string"
 },
 "TimestampPath": {
 "type": "string"
 },
 "DeleteIndicator": {
 "type": "object",
 "properties": {
 "path": {
 "type": "string"
 },
 "value": {
 "type":["string","boolean","number"]
 }
 },
 "additionalProperties":false,
 "required":["path","value"]
 },

Infor ION Development Guide–Cloud Edition | 105

Creating custom metadata

 "AdditionalProperties": {
 "type": "object",
 "additionalProperties": true
 }
 },
 "additionalProperties": false
}

Properties

This table shows each of the properties that may be included in the file. All properties are optional.

DescriptionProperty

The set of properties of the data object that identify the object. This
applies if the data object consists of a single JSON or DSV object.

Alternatively, the set of properties of the data objects. This applies
if the data object holds a newline-delimited list or an array of objects.

Each property in the array must be a JSON path to the property that
is the identifier or part of the identifier.

IdentifierPaths

The path to a property that indicates a variation number or variation
string. This must be a JSON path.

If this property is available, it can be used for these purposes:

• To determine the sequence in which multiple changes on a
single object took place

• To find the latest version of an object

VariationPath

The path to a property that indicates the moment the object was last
updated or created in the application that owns the data. This must
be a JSON path. The property it refers to must have a date-time
format.

If this property is available, it can be used to determine the order in
which changes on a set of objects from the same application took
place. This property is less accurate than VariationPath, but can
be used across objects.

TimestampPath

This area can be used for additional properties that are not owned
or prescribed by the Data Catalog. Any custom properties for appli-
cations must be added here.

Note: When you add additional properties, ensure that the name of
each property is unique. We recommend that you include the appli-
cation logical ID as a prefix to the property name.

AdditionalProperties

Infor ION Development Guide–Cloud Edition | 106

Creating custom metadata

DescriptionProperty

The path to the property that indicates whether the object is deleted,
or marked as deleted, and the property value to indicate that. The
property must be a boolean, number, or string, and the specified
value must match that data type.

When you use DeleteIndicator, these properties are required:

• path - The path to a property that holds the delete indicator for
the object. This must be a JSON path.

• value - The value of the delete indicator property to determine
that the object is deleted. This value can be a string, boolean,
or number. The value must match the data type of the property
that “path” is pointing to.

DeleteIndicator

Example

This code shows an example of an object’s properties file:

{
 "IdentifierPaths":[
 "$.*.myIdProperty",
 "$.*.mySecondIdProperty"
],
 "VariationPath":"$.*.myVariationId",
 "TimestampPath":"$.*.myTimestampProperty",
 "DeleteIndicator":{
 "path":"$.*.myDeleteIndicatorProperty",
 "value":"deleted"
 },
 "AdditionalProperties":{
 "infor_ies_searchPath":{...},
 "infor_ies_indexDefinition":{...},
 "acme_myCustomThingies":{...}
 }
}

Defining a custom noun
You can add the metadata for your own nouns to the Data Catalog.

Customer-defined nouns do not have to fully, adopt all practices as used in standard nouns, such as
the way object IDs or references are formatted. They must meet these conditions:

• The noun content is in XML.
• The noun has an identifying attribute.
• The noun's envelope is a BOD.

Nouns are described by XML Schema (XSD) files. The Infor-delivered nouns are the officially published
schemas. Customers can create their own XMLSchema for their nouns.

Infor ION Development Guide–Cloud Edition | 107

Creating custom metadata

The name of a custom noun must be unique compared to the standard noun names that are already
uploaded in the Data Catalog. We recommend that you always precede Custom nouns with "My. " For
example, MyMaterialRelease or MyShippingSchedule. Using "My "avoids naming conflicts with
standard Infor nouns.

The name of a custom noun may contain:

• Any standard letter in any language
• Numbers 0-9
• Underscore

To add a custom noun to the Data Catalog, you must prepare an archive file containing the metadata.
You can upload several custom nouns in one archive at the same time. For each custom noun, a noun
data-set composed of two files must be present and must contain the noun name in the title:

• <nounname>.xml
• <nounname>.xsd

These additional validations are performed on the archive file upon import by ION Desk:

• The archive may only contain valid XSD and valid XML files.
• The noun name of the XSD file must be the same as the noun name used inside the XSD file.
• The custom noun definition may only be defined in one XSD file.
• The XML files that defined the metadata of the custom noun must refer to this namespace:

xmlns="http://schema.infor.com/CloudRegistry/1"

Upon upload of a custom noun, ION Desk assigns this noun a patch number, depending on the first
available number for the current tenant. When the same custom noun is uploaded again, the patch
number increases. ION Desk does not compare the noun definition contents of the new noun and the
noun that already exists in the Data Catalog.

To create the metadata for a custom noun:

1 Define the custom noun schema file (XSD) and verify that this is a valid schema. Save this file with
the name <nounname>.xsd.

Complete these steps:

a Copy the XMLSchema text below into a file with the name of your noun with a “.xsd” extension.
For example: MyMaterial.xsd.

<?xml version="1.0" encoding="utf-8"?>
<xs:schema targetNamespace="http://schema.infor.com/InforOAGIS/2"
xmlns="http://schema.infor.com/InforOAGIS/2"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qual
ified" attributeFormDefault="unqualified" version="1.0.0">
 <xs:element name="MySampleDocument" type="MySampleDocumentType"/>

 <xs:complexType name="MySampleDocumentType">
 <xs:sequence>
 <xs:element name="SampleHeader" type="SampleHeaderType"
minOccurs="1"/>
 <xs:element name="SampleLine" type="SampleLineType"
minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>

Infor ION Development Guide–Cloud Edition | 108

Creating custom metadata

 </xs:complexType>
 <xs:complexType name="SampleHeaderType">
 <xs:sequence>
 <xs:element name="DocumentID" type="xs:normalizedString"
minOccurs="0"/>
 <xs:element name="DocumentDateTime" type="xs:dateTime"
minOccurs="0"/>
 <xs:element name="Status" type="xs:string" minOccurs="0"/>

 <xs:element name="Description" type="xs:string" minOc
curs="0"/>
 <xs:element name="ShipmentID" type="xs:normalizedString"
minOccurs="0"/>
 <xs:element name="IsActive" type="xs:boolean" minOc
curs="0"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="SampleLineType">
 <xs:sequence>
 <xs:element name="LineNumber" type="xs:integer"/>
 <xs:element name="Amount" type="xs:decimal" minOccurs="0"/>

 <xs:element name="Note" type="xs:string" minOccurs="0"
maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

b Open the file in an editor and replace all occurrences of "MySampleDocument " with "MyMa
terial".

c Adapt the file as required to define the attributes of the custom noun. Do not refer to XSD files
from the Standard folder.

2 Define the custom noun metadata properties file with the name <nounname>.xml. Create a file
named [NounName].xml. For example, if your custom noun is called MyMaterial, the file must
be named MyMaterial.xml.

In this file, add an entry to specify the identifier for the custom noun, verbs that are supported, and
the relation it has with other nouns. Note the ‘IDXPath’ is mandatory, you can leave the ‘Relation’
element empty if there is no other noun to reference.

For example:

<?xml version="1.0" encoding="utf-8"?>
<NounMetadata xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://schema.infor.com/InforOAGIS/2">
 <Noun>
 <NounName>MySampleDocument</NounName>
 <NounType>Transactional</NounType>
 <IDXPath>/*/DataArea/MySampleDocument/SampleHeader/DocumentID</IDX
Path>
 <DescriptionXPath>/*/DataArea/MySampleDocument/SampleHeader/De
scription</DescriptionXPath>
 <StatusXPath>/*/DataArea/MySampleDocument/SampleHeader/Status</Sta

Infor ION Development Guide–Cloud Edition | 109

Creating custom metadata

tusXPath>
<DocumentDateTimeXPath>/*/DataArea/MySampleDocument/SampleHeader/Docu
mentDateTime</DocumentDateTimeXPath>
 <SupportedVerbs>
 <SupportedVerb>Acknowledge</SupportedVerb>
 <SupportedVerb>Process</SupportedVerb>
 <SupportedVerb>Sync</SupportedVerb>
 </SupportedVerbs>
 </Noun>
 <Relation type="Transactional">
 <ToNoun>Shipment</ToNoun>
 <Priority>10</Priority>
 <RelationLabel>My sample document linked to shipment</RelationLa
bel>
 <RelationPaths>
 <FromNounPath>/*/DataArea/MySampleDocument/SampleHeader/Ship
mentID</FromNounPath>
 <ToNounPath>/*/DataArea/Shipment/ShipmentHeader/Documen
tID[1]/ID</ToNounPath>
 </RelationPaths>
 </Relation>
</NounMetadata>

3 Create a folder for each custom noun and place corresponding xsd schema file and xml file
underneath it. The folder name must match the noun name.

4 Gather the custom noun metadata files into one archive file and import this archive into ION Desk.
For information about importing custom nouns into ION Desk, see the Infor ION Desk User Guide.

Once the custom noun is uploaded to the Data Catalog, it is visible to all users of the current tenant.
You can perform these actions using this custom noun:
• Select the application object in a connection point.
• Select the attributes of the object in a filter or content-based routing in an object flow.
• Select the application object and its attributes in a workflow activation policy.
• Select the application object, its references, and its attributes in a monitor.

Important notes:

When using namespaces in your XSDs, the local element name must be unique at any level in a BOD.
Two elements having the same name but a different namespace must not exist within the same parent
element. So, for example, this object is not supported:

<Customer>
 <Address xmlns="namespace1">
 …
 </Address>
 <Address xmlns="namespace2">
 …
 </Address>
</Customer>

Infor ION Development Guide–Cloud Edition | 110

Creating custom metadata

Customizing an existing noun
Standard nouns contain placeholders for adding customizations: the UserAreas. Usually, UserArea
elements are available in multiple locations for a noun. For example, in the header and in the lines.

You can use the UserArea in two ways:

• Using properties in the UserArea. This is the preferred method, because it is supported automatically
for any BOD. No changes are required in the Data Catalog.

• Using a custom XML structure in the UserArea. This method is required if the custom data is too
complex to fit in the property structure.

Both approaches are explained below.

Using properties in the UserArea
If your custom data can be organized in name-value pairs, you can use the standard 'Property' structure
to include this data in the UserArea. In that case customize the application that sends a BOD so that
it includes the required properties. Customize the application that receives the BOD so it can handle
the data.

This code is an example of a UserArea containing data using the standard Property structure:

<UserArea>
 <Property>
 <NameValue name="AcmeCustomNote" type="StringType">My
note</NameValue>
 </Property>
 <Property>
 <NameValue name="AcmeCustomQuantity" type="Numeric
Type">10.00</NameValue>
 </Property>
</UserArea>

Note: To avoid name clashes with properties that may already be used by some applications, we
recommend that you use a prefix, such as your company name.

This table shows some of the types that you can use:

Examples of ValuesType

This is a stringStringType

10.00NumericType

1234IntegerNumericType

2004-12-31T12:32:14.123ZDateTimeType

Two possible valuestrue, falseIndicatorType

To use UserArea properties in ION, no changes are required in the Data Catalog. If you use a BOD
that has a UserArea, you can select your properties in an event monitor or an activation policy.

Infor ION Development Guide–Cloud Edition | 111

Creating custom metadata

Note: You cannot select your properties in ION Connect (content-based routing and filtering).

To select a UserArea property:

1 In the attribute selection window, find the location of the User Area and expand the User Area.

For example, the window can contain this code:

Contract
 ContractHeader
 …
 UserArea
 Property
 NameValue

2 Select the NameValue attribute.

3 Specify the data type for the attribute.

Normally the data type is retrieved from the Data Catalog but when using a UserArea Property you
must specify the data type, because properties can have different data types.

4 For the selected NameValue attribute, define an attribute filter on the name to select the specific
property you are interested in.

For example:

Contract/ContractHeader/UserArea/Property/@name = "AcmeCustomQuantity"

Note: If you use multiple properties from the same user area in an event monitor or workflow
activation policy, you must define the filter for the first property before you can select the next
property. Otherwise two selected attributes will have the same XPath, which is not accepted in
ION Desk.

Using a custom XML structure in the UserArea
If your custom data is too complex to fit in the standardProperty structure, you must use a custom
XML structure.

By default, the UserArea elements in BODs are of type 'AnyType', because they can contain any
data: standard properties, your custom structure, or anything else. In these situations, you must define
an XSD in the Data Catalog:

• To select your properties in ION Connect, in content-based routing or filtering.
• To select your properties in an event monitor or an activation policy.

After adding your XSD to the Data Catalog as described later, your custom elements are displayed in
the attribute selection windows in ION Desk.

For example, assume you must add this custom data in the BOD UserArea:

<UserArea>
 <AcmeCustomContacts>
 <Contact>
 <Name>Someone</Name>

Infor ION Development Guide–Cloud Edition | 112

Creating custom metadata

 <Email>someone@acme.com</Email>
 </Contact >
 <Contact>
 <Name>Someone Else</Name>
 <Email>someone.else@somewhere.com</Email>
 </Contact >
 </AcmeCustomContacts >
</UserArea>

In this case, you must complete these steps:

1 Customize the connection point that sends the BOD, to fill the UserArea as required. Customize
the connection point that receives the BOD, to handle the data.

2 Create an XML Schema Definition (XSD) file to describe the added XML.

For example, the AcmeCustomContacts.xsd file can contain this code:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="AcmeCustomContacts" type="AcmeCustomContact
sType"/>
 <xs:complexType name="AcmeCustomContactsType">
 <xs:sequence>
 <xs:element name="Contact" type="ContactType" maxOccurs="un
bounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="ContactType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Email" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

Note: The XSD for a user area extension must have a single top-level element. To add multiple
elements, put them under a single parent element.

3 In ION Desk, select Configure > User Area Extensions > Schema Files and add the XSD file
to the Data Catalog.

4 In ION Desk, select Configure > User Area Extensions > Extensions. Map the schema file to
the UserArea elements of the nouns that use the User Area Extension.

Note: For details about the Configure > User Area Extensions pages, see the Infor ION Desk User
Guide.

Using an XSD extension for validation
By default, the UserArea is an 'AnyType', because the UserArea can contain any data: standard
properties, your custom structure, or anything else. In this default situation, a BOD normally validates

Infor ION Development Guide–Cloud Edition | 113

Creating custom metadata

successfully against the BOD XSD, independent of the contents of the UserArea. If you defined a
UserArea extension XSD in the Data Catalog, to use the XSD for validating your BOD XML, you must
ensure the validator can find the XSD extension.

To achieve this:

1 Add namespace information to the XSD.
For example, the AcmeCustomContacts.xsd file can contain this code:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schema.acme.com/userarea"
 targetNamespace=="http://schema.acme.com/userarea"
 elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="AcmeCustomContacts" type="AcmeCustomContact
sType"/>
 <xs:complexType name="AcmeCustomContactsType">
 …
 </xs:complexType>
</xs:schema>

2 In the XML that contains the custom data, include a reference to the namespace:

<UserArea>
 <acme:AcmeCustomContacts xmlns:acme="http://schema.acme.com/user
area">
 <acme:Contact>
 <acme:Name>Someone</acme:Name>
 <acme:Email>someone@acme.com</acme:Email>
 </acme:Contact >
 </acme:AcmeCustomContacts >
</UserArea>

Note: The namespace, in this case "http://schema.acme.com/userarea", must be the same
as in the XSD.

After completing these steps you can validate the BOD XML against the BOD XSD. In this case, for
example, validate the BOD XML against SyncContract.xsd.
Note: Validation can help when you set up and test a customization, but reduces performance. Therefore,
if possible, avoid validation of all messages sent or received by your application. The ION Service also
does not validate the BODs against the XSDs as defined in the Data Catalog.

Infor ION Development Guide–Cloud Edition | 114

Creating custom metadata

Chapter 13: Custom message headers

You can define custom message headers for objects that are stored in the Data Catalog. After you
have defined custom message headers, they are available to attach to objects that are processed by
ION services.

To define custom headers, you can use one of these methods:

1 Direct import to Data Catalog through ION Desk. On the Object Schemas page, you can include
a custom headers file in the object import ZIP file. This method is useful if you only want to add or
update custom headers for an object, but not the object itself. It is also useful when updating custom
headers for multiple objects in the Data Catalog.

2 Include custom headers when adding or updating an object using the Data Catalog POST /v1/object
API.
Note: This option is not viable for BODs because the API only supports JSON, DSV, and ANY
objects.

3 In the Data Catalog application on an object’s details page.

For more information on methods 1 and 3, see the “Configuring custom message headers” section in
the Infor ION Desk User Guide.

Custom headers file format

ZIP file import validation

When you import custom headers in ION Desk, the file is validated using this schema:

{
 "$schema": "http://json-schema.org/draft-06/schema#",
 "$id": "http://json-schema.org/draft-06/schema#",
 "title": "Custom Headers Schema",
 "type": "object",
 "properties": {
 "customHeaders": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "objectName": {
 "type": "string"

Infor ION Development Guide–Cloud Edition | 115

Custom message headers

 },
 "headers": {
 "type": "array",
 "maxItems": 3,
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "pattern": "^Custom_[a-zA-Z0-9]+$",
 "maxLength": 250
 },
 "dataType": {
 "enum": [
 "String",
 "Integer",
 "Decimal",
 "Boolean",
 "Date",
 "DateTime"
]
 }
 },
 "required": [
 "name",
 "dataType"
]
 }
 }
 },
 "required": [
 "objectName",
 "headers"
]
 }
 }
 }
}

This is an example of a custom headers file:

{
 "customHeaders": [
 {
 "objectName": "Process.PlannedTransfer",
 "headers": [
 {
 "name": "Custom_processItemID",
 "dataType": "String"
 }
]
 },
 {
 "objectName": "Sync.PlannedTransfer",

Infor ION Development Guide–Cloud Edition | 116

Custom message headers

 "headers": [
 {
 "name": "Custom_syncItemID",
 "dataType": "String"
 },
 {
 "name": "Custom_syncUPCID",
 "dataType": "String"
 }
]
 },
 {
 "objectName": "Inventory_Repo",
 "headers": [
 {
 "name": "Custom_itemNumber",
 "dataType": "Integer"
 }
]
 },
 {
 "objectName": "MITMAS",
 "headers": [
 {
 "name": "Custom_attributeModel",
 "dataType": "String"
 }
]
 }
]
}

Data Catalog API validation

When you register an object with the Data Catalog through the POST /v1/object API, custom headers
for that object are validated against this schema:

{
 "$schema": "http://json-schema.org/draft-06/schema#",
 "$id": "http://json-schema.org/draft-06/schema#",
 "title": "Custom Headers Schema",
 "type": "object",
 "properties": {
 "customHeader": {
 "type": "object",
 "properties": {
 "objectName": {
 "type": "string"
 },
 "headers": {
 "objectName": {
 "type": "string"
 },

Infor ION Development Guide–Cloud Edition | 117

Custom message headers

 "headers": {
 "type": "array",
 "maxItems": 3,
 "items": {
 "type": "object",
 "properties": {
 "name": {
 "type": "string",
 "pattern": "^Custom_[a-zA-Z0-9]+$",
 "maxLength": 250
 },
 "dataType": {
 "enum": [
 "String",
 "Integer",
 "Decimal",
 "Boolean",
 "Date",
 "DateTime"
]
 }
 },
 "required": [
 "name",
 "dataType"
]
 }
 },
 "required": [
 "objectName",
 "headers"
]
 }
 }
 }
 }
}

This is an example of the input body for the API that is used to register an object with custom headers:

{
 "name":"mySalesOrder",
 "type":"JSON",
 "schema": {...},
 "properties":{...},
 "customHeader": {
 "objectName": "mySalesOrder",
 "headers": [
 {
 "name": "Custom_salesOrderId",
 "dataType": "Integer"
 },
 {
 "name": "Custom_shipToAddress",

Infor ION Development Guide–Cloud Edition | 118

Custom message headers

 "dataType": "String"
 }
]
 }
}

Properties

This table shows the properties in the file:

DescriptionProperty

An array of JSON objects. Each JSON object
contains the name of an object schema and the
headers to be defined for that specified object.

Optional.

Note: Applies to the zip file import only.

customHeaders

A JSON object that contains the object name and
the list of headers to be defined for that object.

Optional.

Note: Applies to the POST API only.

CustomHeader

The name of the object for which the custom
headers should be defined.

For BODs, you must specify the full object name
as opposed to only the noun.

For example, Sync.SalesOrder.

Required.

objectName

Infor ION Development Guide–Cloud Edition | 119

Custom message headers

DescriptionProperty

An array of headers to be defined for the object.

A maximum of three custom headers may exist
per object.

Required, but the array can be empty. If an
empty array is found, any existing custom head-
ers for the associated object are deleted.

headers

The name of the custom header.

The name must begin with Custom_ and can
only contain alphanumeric characters, without
any spaces. It cannot exceed 250 characters in
length.

Required.

name

The data type that the custom header value is
expected to have.

These are possible data types:

• String
• Integer
• Decimal
• Boolean
• Date
• DateTime
Note: These are case-sensitive and must match
exactly to pass validation.

Required.

dataType

Infor ION Development Guide–Cloud Edition | 120

Custom message headers

Chapter 14: Application Programming Interface (API)

You can use several ION APIs.

The available ION APIs are:

• ION OneView
• Alarms
• IMS
• ION Process
• Data Catalog
• Business Rules
• Data Lake

For more information on how to use the APIs, see the Infor ION API Administration Guide.

ION services such as OneView can only be used through ION API. As an ION user you must be
authorized as administrator to see the ION API icon in the Infor Ming.le application menu. Click the
ION API icon to find details such as the existing methods.

ION OneView API
ION OneView is used for troubleshooting of integrations and for tracing of data objects throughput in
ION.

ION OneView exposes a REST service with API methods to run these actions:

• Get events or messages by filter
• Get facets response
• Retrieve document payload based on messageId
• Stream document payload based on messageId
• Ping call for oneviewapi

The ION OneView API is located in the Infor ION (IONSERVICES) API suite and the /oneviewapi
endpoint. For detailed information about the methods that are exposed in the endpoint, see the Swagger
documentation. For information on how to use ION APIs and how to interact with Swagger documentation
for the API methods, see the Infor ION API Administration Guide.

You should be authorized as administrator to use an ION service API such as ION OneView API.

Infor ION Development Guide–Cloud Edition | 121

Application Programming Interface (API)

The methods in this endpoint are authorized at the user level. Internal verification is performed to
determine whether the user who calls this API has the permission to perform this call.

Available API Methods
This table shows the API methods available in the /oneviewapi endpoint:

DescriptionTypeMethod

Get events or messages based on the filter.
Define the 'store' parameter to access the type
of collection to address: Event (default) or Mes-
sage. For example, use this query:

/data?[filter=<filterExpression>]&
[store=<Event|Message>]&[page=<pag
eNumber>]&[records=<numberOfRecord
s>]&[sort=<sortFieldName>]

You can use the 'filter' URL parameter to ex-
press "dynamic" search query by the client.

Example of compound and nested condition:

(event_source_type eq '*jdbc') and
(event_type eq 3 OR
(event_type eq 4 AND event_source_
name eq "infor.rec.rec"))

GET/data

Get aggregations for statistics analysis. For ex-
ample, you can find the mostly used connection
points.

Parameters can be one of the available fields,
such as message header and content fields,
document type, document id, or document noun.
The fields slightly differ for on-premises and in
cloud; see the Infor ION Desk User Guide.

GET/data/facets

Retrieve a document payload for the specified
message Id.

GET/data/documentPayload

Stream a document payload for the specified
message Id.

GET/data/streamDocumentPay
load

Test whether the service is running.GET/data/ping

Infor ION Development Guide–Cloud Edition | 122

Application Programming Interface (API)

ION Process API
The ION Process APIs expose functionality that is related to:

• Workflows that run in the Workflow engine.
• Alerts, tasks, and notifications managed by the Pulse engine.

The ION Process APIs are located in the “Infor ION” API Suite and these endpoints:

• process/application

This endpoint exposes methods that are authorized at application level and do not require a user
identification. After a client application has access to this endpoint, it can call any method without
further security checks being applied.

• process/user

This endpoint exposes methods that are authorized at user level. Internal verification is performed
to determine whether the user who calls this API has the permission to perform this call. For
example, you cannot close a task that is not assigned to you.

For detailed information about the methods that are exposed in each endpoint, see the Swagger
documentation of each endpoint. For more information on how to use ION APIs and how to interact
with Swagger documentation for the API methods, see the Infor ION API Administration Guide.

Data Catalog API
The Data Catalog is an application that runs in the ION Grid. It exposes a REST Service with API
methods to run one of these actions:

• Retrieve a list of all existing objects in the Data Catalog.
• Register object metadata for JSON and DSV objects.
• Retrieve metadata for JSON and DSV objects.
• Retrieve a list of BOD nouns.
• Retrieve noun properties for BODs.

Interface and consumption methods are exposed through the Data Catalog API Service registered
within the ION API Suite for Infor ION.

For more information on using ION APIs and interacting with Swagger documentation for the API
methods, see Infor ION API Administration Guide.

Additionally, the API uses the OAuth 1.0 authorization type. To use this method of authentication, you
must obtain security credentials for the DataCatalog service from your system administrator. For a
technical description of the API methods, see the swagger documentation of the Data Catalog endpoint
on:

https://<your server name>:9543/datacatalog/swagger.json

Note: The port number may be different on your installation.

To check whether the /datacatalog endpoint is started, run the ping method:

Infor ION Development Guide–Cloud Edition | 123

Application Programming Interface (API)

https://<your server name>:9543/datacatalog/ping

You can run this method from a browser window. A successful reply returns the REST API version
number, such as 1.

Available REST APIs
This table shows the available API methods:

DescriptionTypeMethod

Verify whether the REST Ser-
vice is running. If successful, the
reply contains the API version
number.

GET/datacatalog/ping

Returns a list of all documents
in the Data Catalog. Optionally,
you can filter by document type
or document name.

Note: This API has been depre-
cated. Use /datacatalog/v
1/object/list instead.

GET/datacatalog/v1/documen
t/list

Upload a document of type
JSON with its schema and
properties.

For validation details, see
Defining a custom object of type
JSON on page 95.

Documents are uniquely identi-
fied by their name. A subse-
quent upload overwrites the
previous document definition.

Note: This API has been depre-
cated. Use the POST /dataca
talog/v1/object API in-
stead.

PUT/datacatalog/v1/documen
t/json

Returns the JSON schema for
the specified document name.

Note: This API has been depre-
cated. Use /datacatalog/v
1/object/{name} /schema
instead.

GET/datacatalog/v1/documen
t/json/{name}/schema

Infor ION Development Guide–Cloud Edition | 124

Application Programming Interface (API)

DescriptionTypeMethod

Returns the JSON properties for
the specified document name.

Note: This API has been depre-
cated. Use /datacatalog/v
1/object/{name} /proper
ties instead.

GET/datacatalog/v1/documen
t/json/{name}/propertie
s

Upload an object to the Data
Catalog.

For validation details, see the
“Defining a custom document of
type …” section for the specific
type.

Note: This API cannot be used
to upload a BOD object.

Objects are uniquely identified
by their name. A subsequent
upload overwrites the previous
object definition for that type. If
an object has the same name
as another object of a different
type, the import for the new ob-
ject fails.

POST/datacatalog/v1/object

Returns a list of all objects in the
Data Catalog. Optionally, you
can filter by object name or ob-
ject type.

GET/datacatalog/v1/object/
list

Returns the object name, type,
subtype, schema, properties, l
astUpdatedOn, and lastUpd
atedBy for the specified object
name.

GET/datacatalog/v1/object/
{name}

Returns the object schema for
the specified object name.

Note: This API cannot be used
to retrieve BOD or ANY objects.

GET/datacatalog/v1/object/
{name}/schema

Returns the object properties for
the specified object name.

Note: This API cannot be used
to retrieve BOD or ANY objects.

GET/datacatalog/v1/object/
{name}/properties

Returns the object type for the
specified object name.

GET/datacatalog/v1/object/
{name}/type

Infor ION Development Guide–Cloud Edition | 125

Application Programming Interface (API)

DescriptionTypeMethod

Returns the object name, type,
subtype, schema, properties, l
astUpdatedOn, and lastUpd
atedBy for each of the objects
specified in the API call. Up to
100 object names can be speci-
fied in the call.

Note: This API cannot be used
to retrieve BOD metadata

POST/datacatalog/v1/object/
fetch

Returns the name, type, sub-
type, lastUpdatedOn, and la
stUpdatedBy information for
each of the objects that are
specified in the API call. Up to
100 object names can be speci-
fied in the call.

Note: This API cannot be used
to retrieve BOD information.

POST/datacatalog/v1/object/
fetch/audits

Returns the total object count
and the most recent lastUpda
tedOn value for objects in the
Data Catalog. Optionally, you
can filter by object type.

Note: This API excludes BODs

GET/datacatalog/v1/object/
summary

Business Rules API
The Business Rules APIs expose functionality to request the execution of an approval matrix or a
decision matrix. These APIs can only execute matrices that have been created and approved in the
Business Rules UI in ION Desk. These APIs are located in the “Infor ION” API suite in the “businessrules”
endpoint.

Note:
• Only the matrices that are approved can be listed and executed through the Business Rules API.
• The latest version of the matrix is used for each API call.
• To execute a matrix, values are required for the matrix input parameters. The execution of a matrix

returns the same results as the Simulation operation in the Business Rules UI. For example, the
results of an approval matrix execution could be a list with distributions to the same user, displayed
several times. The application that calls the API decides how to handle the approval chain. For
example, the application can perform one of these actions:

Infor ION Development Guide–Cloud Edition | 126

Application Programming Interface (API)

• Merge duplicate distributions and send tasks one after the other, as in the workflow task chain
in ION.

• Simultaneously send parallel tasks to all users in the resulting list.

• The result of an approval matrix execution is a list with distributions to users. These users are
represented by the IFS Person ID, Group Names, and ManagerOf properties from Infor Ming.le
User Management. To retrieve the other relevant properties of these distribution elements, the
application that calls the API must be integrated with Infor Ming.le User Management.

• The result of a decision matrix execution is a list of values for the output parameters from the matrix
definition. The values from the first row that matched the matrix conditions, which are evaluated
for the values provided for the matrix input parameters, are returned. For detailed information about
the methods that are exposed in this endpoint, see the Swagger documentation.

For more information on using ION APIs and interacting with Swagger documentation for the API
methods, see the Infor ION API Administration Guide.

Data Lake API
The Infor Data Lake is a scalable, elastic object store for capturing raw data in its original and native
format. The Data Lake provides several interfaces for:

• Retrieving, querying or purging data.
• Providing data management features to manage archiving by policy.
• Restoring aged data.
• Retrieving statistical information about the stored objects.

Interface and consumption methods are exposed through the Data Lake API Service registered within
the ION API Suite for Infor ION.

Note: The Data Lake JDBC driver is only available for multitenant Cloud customers using Birst.

For more information on how to use ION APIs and how to interact with Swagger documentation for the
API methods, see Infor ION API Administration Guide.

For more information about Storage Policies, see Infor ION Desk User Guide.

This table shows an overview and statistical information about data objects:

DescriptionTypeMethod

Get the total number of data objects and total size.GET/v1/status/overview

Get the size and count of the data objects in Infor
Data Lake.

GET/v1/status/dataInges
tion

The top 10 biggest Data Objects Names that are
stored by their size.

GET/v1/status/topObjects

Aggregation on one of data object fields such as
dl_id, dl_instance_count or dl_size within
a defined time range period and interval.

PUT/v1/status/aggregation

Infor ION Development Guide–Cloud Edition | 127

Application Programming Interface (API)

DescriptionTypeMethod

Ping call for the Infor Data Lake API.GET/v1/status/ping

Get the current running build number of the Infor
Data Lake.

GET/v1/status/version

Retrieving data objects
The Data Lake API provides methods to list and retrieve data objects from the Data Lake. You can
either retrieve the requested data objects in request using:

• The streambyfilter method.
• A two-step approach by first calling the list method and then retrieving the details for each item

using the streambyid method.

This table shows an overview of the available API methods:

DescriptionTypeMethod

Returns a list of data objects and its indexed
metadata including its physical address (Data
Object ID) that is based on any defined filter cri-
teria.

GET/v1/payloads/list

Returns data object streams as a multipart mixed
message that is based on filter arguments
passed in the API request. It can be configured
to return both corrupt and non-corrupt objects.

GET/v1/payloads/streambyfil
ter

Returns a single data object as an octet-stream
message that is based on the address of an ob-
ject stored in Data Lake. Object IDs can be re-
trieved by passing filter arguments into the /v1/
payloads/list API and capturing the dl_id
value from the API response.

GET/v1/payloads/streambyid

Marks an object dl_corrupt field to true. This
object is not returned with the default /v1/pay
loads/streambyfilter usage.

PUT/v1/payloads/markcorrupt

By default, content in the Data Lake is both stored and streamed to clients in a compressed state. For
exceptionally large content retrievals, especially through the streambyfilter API, this deflating
content method ensures that performance of the gateway and requesting clients remains nominal.

Authorized API applications and RESTful API clients that are used for API testing can advertise
supported content encoding to the server. To stream and persist data in a compressed format, the
requesting party can configure their request with the request header:

• Accept-Encoding: deflate

Infor ION Development Guide–Cloud Edition | 128

Application Programming Interface (API)

Using the “identity” value in a request HTTP header, clients can stream their requested content with
no encoding in place. This setting is typically configured using the request format:

• Accept-Encoding: identity

Not all clients support the “identity” value. See your API application or client’s documentation to determine
whether these request HTTP header values are supported.

Querying data objects
Data Lake API provides a group of methods called Compass.
Note: Data Lake API Compass group of methods is not available in AWS GovCloud

With Compass you can query and retrieve data that is stored in the data objects from the Data Lake.

To run a query and get the results you can use these methods:

• Post a Compass job to receive a unique Query ID for the job.
• Get the status of a job, using the Compass Status method and the Query ID for the job.
• Get the results of a finished job, using the Compass Results method and the Query ID for the job.

For more details on Data Lake Compass and querying data objects see Data Lake queries on page
133.

This table shows an overview of the available API methods:

DescriptionTypeMethod

Tests whether the Compass service is running.GET/v1/compass/ping

Use this API to submit a Compass SQL query
as an asynchronous job.

In the request body parameter provide your SQL
statement. The response provides a Query ID.

Use the Query ID with the Compass Status API
to check the status of the submitted job.

POST/v1/compass/jobs

Infor ION Development Guide–Cloud Edition | 129

Application Programming Interface (API)

DescriptionTypeMethod

Use this API to check the status of a Query ID
that was provided from a Compass job.

The response indicates if the query is still pro-
cessing or has finished.

Use the polling parameter to specify the long-
polling time-out period.

Query statuses:

• RUNNING - Indicates that the query is exe-
cuting.

• TRANSFORMING - Indicates that the query
results are being prepared.

• FINISHED - Indicates that the query complet-
ed successfully. You may get the results.

• FAILED - Indicates that the query is finished
and ended in error. Use the GET result API
call to retrieve the error details.

GET/v1/compass/jobs/{query
Id}/status

Use this API to retrieve the results for a Query
ID that was provided by the Compass Jobs API.

Initially, check the status of the Query ID using
the Compass Status API. Ensure the process
has finished running before using this API to re-
trieve the result.

GET/v1/compass/jobs/{query
Id}/result

Purging data objects
The Data Lake API suite provides methods to purge data objects from Data Lake.

You can purge the data object using one of these methods:

• The purge/filter method.
• A two-step approach by first calling the v1/payloads/list method to receive the list of data

object id(s) and then purging data object(s) using the purge/ids method

This table shows an overview of the available API methods for purge data object:

DescriptionTypeMethod

Purge data object by its ID.

You can retrieve object IDs by passing filter argu-
ments into the /v1/payloads/list API and
capturing the dl_id value from the API re-
sponse.

DELETE/v1/purge/ids

Infor ION Development Guide–Cloud Edition | 130

Application Programming Interface (API)

DescriptionTypeMethod

Purge data objects based on filter arguments
passed in the API request.

DELETE/v1/purge/filter

Note: Purging data objects from Data Lake deletes the data object payload from ION OneView.

Archiving data objects
The Data Lake API provides archive methods to move data objects from frequent access storage in
the long-term storage.

After data objects are demoted to long-term storage, they are not accessible to any data retrieval
interface. This includes the Data Lake’s Payload API methods, Compass API methods, Birst, and other
applications. You must restore the data object from archive.

The storage policy is assigned to a data object when the object is ingested and stored in Data Lake.
You cannot assign a different storage policy or remove the existing one on data objects that are already
stored in Data Lake.

This table shows an overview of the available API methods:

DescriptionTypeMethod

Get a list of storage policies and data objects as-
signed to them. By default, all objects are as-
signed the Default Storage Policy.

GET/v1/archive/strategy

Change an existing or define a new storage policy.POST/v1/archive/strategy

History for created or changed storage policies.GET/v1/archive/logs

Restoring data objects
The Data Lake API provides methods to restore data objects from the long-term storage to the frequent
access storage.

To use the Restore API:

1 Run the GET /v1/restore/list method to search for data objects in the long-term storage.

2 Check the response from GET /v1/restore/list.

The response body contains a list of data object addresses that were found in the long-term storage.

3 Use the list of data objects as input in the POST /v1/restore/payloads method to start the
restore procedure.

4 Run the GET /v1/restore/logs method to see the status and history of all restore requests.

This table shows the API methods:

Infor ION Development Guide–Cloud Edition | 131

Application Programming Interface (API)

DescriptionTypeMethod

Searches for data objects in long-term stor-
age and returns a list of found data objects
that is used an input in POST /v1/restor
e/payloads.

GET/v1/restore/list

Starts the restore procedure. The list of data
objects from GET /v1/restore/list is
used.

POST/v1/restore/payloads

List of all restore procedures and their status.GET/v1/restore/logs

Note: Permanently restored data objects cannot be moved back to the long-term storage.

It can take up to 6 hours until the restore is finished and having the data objects available in frequent
access storage.

Infor ION Development Guide–Cloud Edition | 132

Application Programming Interface (API)

Chapter 15: Data Lake queries

With the Data Lake query functionality, you can query Data Lake data objects.

The functionality is useful to run ad-hoc queries and to execute queries and send results to downstream
applications.

Two query methods are available:

• A Data Lake JDBC driver for Birst
• Compass queries

The query functionality and query syntax are different for each method. The functionality is outlined in
separate sections.

Method one, the query functionality for Birst, uses a Data Lake JDBC driver to access Data Lake data.
The query functionality is only available through a Birst agent.

See Data Lake JDBC driver for Birst on page 136.

Method two, the query functionality for Compass, is available through the Data Lake Compass query
editor, the Compass APIs, and the Compass JDBC driver.

For the Data Lake Compass query editor, see "Compass UI" in the Infor ION Desk User Guide.

For Compass, see Data Lake Compass queries on page 143.

Note: Compass queries are not available in AWS GovCloud.

Data Lake data object definitions
The Data Lake objects available to query through either method are new-line delimited JSON objects
and delimited-separator value (DSV) objects. The required formats are outlined.

JSON data objects
For data objects in JSON format, the Data Lake JDBC driver for Birst and Compass supports
newline-delimited (streaming) JSON format.

Infor ION Development Guide–Cloud Edition | 133

Data Lake queries

Newline-delimited JSON format offers better query performance and is a recommended format for big
data applications. The JSON objects must have a flat, single-level structure. The only nested structure
supported is for localized strings. JSON objects must use UTF-8 encoding.

See Creating custom metadata on page 92.

DSV data objects
The Data Lake JDBC driver for Birst and Compass supports queries of Data Lake objects in DSV
(delimiter-separated values) format.

For data objects in DSV format, the DSV payload objects must include a single header row with property
names. If DSV metadata dialect “skipLines” is not explicitly defined in the metadata, a value of one is
assumed. If DSV metadata dialect “headerLine” is not explicitly defined in the metadata, a value of one
is assumed. Each DSV line must end with a carriage return or line feed character, or a carriage return
and line feed character.

The DSV object must use a single separator character. The DSV metadata dialect “separator” value
defines the separator character. The separator characters of comma, tab, and pipe are supported.

The DSV metadata dialect enclosingCharacter property is a character that is used to define the
start and end of a value. Each column and value does not require enclosing characters. If a value in
a data object contains the specified enclosing character, it must be escaped. You can add another
enclosing character directly next to it. When a pair of enclosing characters are found inside a field, they
are interpreted as a single character. The enclosing character of single or double quotes is supported.

Special characters in values can produce inaccurate or incorrect results. If a query returns inaccurate
results, verify that the value is enclosed. DSV objects must use UTF-8 encoding.

See Creating custom metadata on page 92.

Data object definitions for localized string values
Data Lake objects may contain localized string values.

The values can be queried by the Data Lake JDBC driver for Birst and by Compass queries.

The localization functionality works in conjunction with the Data Catalog Locale Selection function. The
Locale Selection function is used to define the locales that supported the source application. Or the
function is used for defining the locale codes for the localized values in the Data Lake “payload” objects.

The term “payload” denotes the actual DSV and JSON objects that are stored in the Data Lake. The
source application sends data objects, with the localized values, to Data Lake. The query matches the
locale selections to the localized strings in the Data Lake data. The query returns localized values into
numbered position columns. The positions, and the main and substitute locale codes for each position,
are defined in the Locale Selection.

For Data Catalog Locale Selections, see the Infor ION Desk User Guide.

Infor ION Development Guide–Cloud Edition | 134

Data Lake queries

For example, the source application supports these locales:

• en_US
• fr_CA
• es_ES

The Data Catalog locale selections are position 1 for en_US, position 2 for fr_CA and position 3 for
es_ES.

The locale in the first position is used as the default locale. When a query selects a localized value,
the driver retrieves the en_US value for table column 1. The fr_CA value is retrieved for table column
2 and the es_ES value for table column 3. The column name does not include the locale code. With
the numbered position columns, you can specify which locales are used.

Compass queries and the JDBC driver for Birst support two string localization methods. Both methods
use the data object’s property metadata, stored in Data Catalog Object Schemas.

The query reads the source Data Lake objects for a match to the Data Catalog’s Locale Selection
“Locale Code Search List”. The search list must include the locale code first and can be followed by
one or more locale codes to use as substitute locales. For example, if a value for en_US is not found
in the data, and the next code in the list is “en”. The driver returns the “en” value.

The matching process between the query, the Locale Selections and Data Lake data occurs each time
the query runs. The data object localization definitions are explained later.

For query processing using the JDBC driver for Birst, see these sections:

• Data Lake JDBC driver for Birst on page 136
• Data Selection for Localized String Values on page 137

For query processing using Compass queries, see these sections:

• Data Lake Compass queries on page 143
• Queries for localized data on page 157

Data object localized data definition, method 1
In this method, the data object’s metadata defines the property as type object and localized.

In the JSON data object payload, the localized string values are formatted as an object. Each localized
value is a name value pair using the locale code and the localized string value. The driver reads the
JSON data object to match the locale codes to the localized values.

Example of a localized property in a JSON data object:

“greeting":{"en_US":"hello","fr_FR":"bonjour","es_MX":"hola"}

Data object localized data definition, method 2
In this method, the data object’s metadata defines the property as type string, and the property is
defined as a localized property.

Infor ION Development Guide–Cloud Edition | 135

Data Lake queries

In the JSON or DSV data object, the localized string data is formatted as individual properties. Each
property name has a locale code suffix. The driver reads the JSON or DSV data object to match the
property suffixes to the locale codes, and returns the localized values.

Example of a JSON data object with strings that are localized:

“greeting_en_US":”hello”,”greeting_fr_FR”:”bonjour”,”greeting_es_MX”:”hola”

Data Lake JDBC driver for Birst
The Infor Data Lake JDBC driver for Birst Analytics is used to query JSON and DSV objects stored in
the Data Lake.

The driver provides a method to retrieve data from data objects sent through ION Data Lake flows.
The metadata for the objects is stored in the Data Catalog as object schemas.

The JDBC driver is used with the Birst Connect agent and is associated with Birst connections. The
JDBC driver is used to select and retrieve data objects from the Data Lake and returns the data for
Birst queries.

Data Selection Features
Birst Connect uses the JDBC driver to select data objects from Data Lake. You can use Query-based
objects to input a query to retrieve data, sourced from JSON or DSV payload objects, as rows of a
result set.

Note that in Birst queries for DSV data objects, omit lines with nothing but whitespace and null values.
For example, a line of separator characters between empty values results in an empty row of data
when the object is queried. DSV payloads with blank lines, such as lines with only line feed or carriage
return characters, are not supported. The data object fails because the row does not contain the required
number of fields.

Two query methods are supported:

• A general object query is a select statement to return all properties and data from an object. The
Birst query is not visible. A general object query returns the data in the latest object loaded into
Data Lake.

• A query-based object selection is a select statement to return all or specific properties from an
object. If a WHERE clause condition does not base the query on the lastModified timestamp,
the driver returns data from the latest data object in the Data Lake. If a WHERE clause condition
bases the query on a lastModified timestamp, the query returns data from objects loaded within
the lastModified limits. The lastModified value corresponds to the datetime at which the
data object was loaded into Data Lake.

Through the Birst connection, use the Edit objects option to display a list of the objects available in
Data Lake. The list is comprised of JSON or DSV type object types defined in the Data Catalog.

Infor ION Development Guide–Cloud Edition | 136

Data Lake queries

The driver uses the Data Catalog metadata for the object to identify object names as table names and
the object properties as table column names.

Data Lake objects marked as corrupt are automatically excluded from query results.

Data Selection for Localized String Values
The localization functionality supports queries for localized string values, stored in the data objects in
Data Lake.

Through the object metadata, specify that a property is localized, and the driver returns the localized
values. Localized values are stored in data stores, where they can be used in reports and dashboards.

For details on defining localized string data and metadata, see Data object definitions for localized
string values on page 134.

Specifically, for Birst, the object query includes the locale keyword to select localized string values.
Additionally, a separate table in the Birst data store stores the Data Catalog locale selections. For
example, the source application supports these locales:

• en_US
• fr_CA
• es_ES

The Data Catalog locale selections are position 1 for en_US, position 2 for fr_CA, and position 3 for
es_ES.

The locale in the first position is used as the default locale. When a query selects a localized value,
the driver retrieves the en_US value for table column 1. The fr_CA value is retrieved for table column
2 and the es_ES value for table column 3. The column name does not include the locale code. With
the numbered position columns, you can specify which locales are used in Birst.

To complete the localization for Birst, the locale selections are setup as a separate table in the data
store. The locale selections are used to match the table data to the report consumer’s language. When
a report is rendered, if the report consumer’s language is en_US, the report displays the data in position
1. If the report language is fr_FR, the report displays data in position 2. If the report language is not
available in a position, the report returns the value in position 1, because it is the default locale.

The driver uses two methods to determine if string properties are localized. Both methods use the
document’s property’s metadata, which is stored in Data Catalog Object Schemas.

The driver reads the source objects for a match to the Data Catalog’s Locale Selection “Locale Code
Search List”. The search list must include the locale code first, and can be followed by one or more
locale codes to use as substitute locales. For example, if a value for en_US is not found in the data,
and the next code in the list is “en”, the driver returns the “en” value.

The matching process between the driver, the Locale Selections and Data Lake data occurs each time
the query runs.

If the Data Catalog Locale Selections change after data is loaded into the target tables, the target tables
can be cleared and repopulated. For example, if position 2 is French, French values are loaded into

Infor ION Development Guide–Cloud Edition | 137

Data Lake queries

the target tables. If position 2 changes to Spanish, subsequent queries populate position 2 with Spanish
values. A report run for the Spanish language shows Spanish for current data and French for historic
data. The report shows a combination of both, since the current locale selection defines position 2 as
Spanish.

SQL Query Expressions
Each SQL query is based on a single JSON or DSV custom document. Joins are not supported.

The object names are not case-sensitive. For example, an object schema named Customer may be
queried as Customer or customer.

Property names are case-sensitive. For example, a property name of ProductID must be selected in
a query as “select ProductID”.

Use double-quotes if the object name or property name includes spaces. Double-quotes are not required
if the object or property name includes underscores. Object or property names that begin with a digit
must be enclosed within double-quotes. Enclose property names that are SQL reserved words with
double-quotes.

Select individual properties from a data object

Example: SELECT property1, property2 from dataobject

Select individual properties from the data object. Object names are not case-sensitive. Property names
are case-sensitive. In the example that is mentioned earlier, “property1” and “property2” are property
names. The case that is used in the query must match the case of the property names in the Data
Catalog’s metadata definition.

The result of a query without a WHERE lastModified condition are the "rows" of data in a single
payload object. The rows correspond to the tuples in the latest object loaded into the Data Lake. In
BIRST the properties are returned in alphabetical order, regardless of the order in which they are
specified in the select statement.

Select individual properties using aliases from a data object

Example: SELECT property1 as alias1, property2 as alias2 from dataobject

Select individual properties from the data object and use aliases. Aliases can be enclosed in square
brackets or double quotes.

Incorporate comments in a query

Example: /*query that uses aliases*/ SELECT property1 as alias1, property2
as alias2 from dataobject

Enclose comments within /* and */ characters.

Infor ION Development Guide–Cloud Edition | 138

Data Lake queries

Select properties and include the Data Object load timestamp

Example: SELECT property1, property2, lastModified from dataobject

Select the lastModified column in the query to return the last modified datetime of the data object.
The last modified datetime is the timestamp, in UTC, in which the message containing the “row” was
posted to the Data Lake. lastModified is case-sensitive. The last modified timestamp is a property
of the data object itself. It is not a property inside of the object payload.

Select records that are based on the last modified timestamp

Example: SELECT ... from dataobject where lastModified >= 'Timestamp in UTC'

Select records using the last modified datetime to limit the selection to data posted to the Data Lake
within a specific time frame. The lastModified value represents the timestamp, in UTC, for the
datetime in which the data object was added to the Data Lake. This syntax is useful because you can
append the lastModified condition to retrieve data objects loaded into the Data Lake based on the
object's load time. This is the main difference between selecting objects using the standard Birst object
selection and a query-based selection.

The timestamp is a property of the object itself. It is not a property inside of the object payload. Through
Birst, you can setup a variable to define the timestamp value, which can be used in place of specifying
a timestamp value. Enclose the timestamp value, or the variable, in single quotes.

The lastModified timestamp format is a timestamp in UTC. The timestamp format is:

yyyy-MM-dd'T'HH:mm:ss.SSS'Z'

A last modified reference in a query expression’s WHERE clause can use these operators:

• =
• >=
• <=
• BETWEEN

Select all records

Example: SELECT * FROM dataobject

The select all syntax is not recommended. The select all syntax allows the Birst query to retrieve all
properties from the object. This functionality is useful when the object properties are updated over time.
If the data object definition changes over time, it may not match the Birst table schema into which the
data is imported.

Select the Data Catalog Locale Selections

Example: SELECT * from datacatalog.locale_selection

The query returns the locale selections that are defined in the Data Catalog Locale Selection function.
The CODE is the locale code. The POSITION is the position number of the locale. The SEARCH_LIST
values are the locales used by the query to select localized values. The search list locales are searched
in priority order until a value is found. The DEFAULTING value combines two properties. The Default
value designates the locale code of the default locale. The default locale is automatically assigned to

Infor ION Development Guide–Cloud Edition | 139

Data Lake queries

the locale in position 1. The NoFallback value denotes that if a localized value is not found in the
data, the position is empty. The NoFallback option is automatically assigned.

Select localized values for a property

Example: SELECT locale(localizedproperty, number of positions) FROM dataobject

The locale function is used to select localized values from the source object. The locale function is
case-sensitive, and all letters are lower-case. The number of positions defines the number of numbered
columns that are returned in the results. The locale function returns localized values that are based on
the locale selections.

The query results are the property name with a position number suffix, such as property_1, property_2,
property_3. The values that are populated in the positions are the localized values matching the locale
code, or a search list locale code, for each position.

If the data object does not contain localized values, the property’s string value is returned in position
1. The remaining position columns are empty.

Select localized values for a property that is not localized

Example: SELECT locale(property, number of positions) FROM dataobject

The locale function is used to select localized values from the source object. The number of positions
defines the total number of numbered columns returned in the results. The property is not defined as
a localized property in the metadata. The result is the position number columns. The single string value
found in the data object, is returned as the value of position_1. The remaining position columns are
empty.

Select a property that is localized without the locale function

Example: SELECT localizedproperty FROM dataobject

When the locale function is not used, a single value, in the default locale, is returned. The default locale
is the locale in position 1 of the Locale Selections. If the data does not contain a localized value for the
default locale, or the locale’s search list locale codes, the value is empty.

Troubleshooting SQL expressions
The Troubleshooting information describes how to diagnose and solve issues with SQL expressions.

The query returns no values or displays the message: “There are no columns to display.
Please adjust your search criteria or applied filters”.

Verify in OneView that at least one data object of this type is received. It must contain data with property
names matching those in the Data Catalog and your query.

For DSV objects, verify that the object payload has a single row of column headers. The column headers
must match the metadata property names. Property names are case-sensitive.

Infor ION Development Guide–Cloud Edition | 140

Data Lake queries

If the query contains the locale function, verify that the locale keyword is lower-case. The maximum
number of locale positions is 32.

The query returns the error: Unable to retrieve data…Invalid property name reference: ‘property
name’

The property name(s) reference the property names that are used in the query. Verify that property
name(s) exactly match the property names defined for the object in the Data Catalog. Property names
are case-sensitive.

For DSV objects, verify that the object payload has a single row of column headers. The column headers
must match the metadata property names. Property names are case-sensitive.

The query returns the error: Object ‘object name’ not found.

The object refers to the table name that is referenced in the query. Verify that the object name is correct,
and verify that the object name matches the name that is defined in the Data Catalog. Object names
are not case-sensitive.

The lastModified predicate in the WHERE clause is not working.

The keyword lastModified is case-sensitive with an upper-case M for Modified. The timestamp must
be formatted using the ISO-8601 timestamp format. Timestamps must be provided using UTC timezone
conventions and include a fractional millisecond. The timestamp format is: yyyy-MM-
dd'T'HH:mm:ss.SSS'Z'

Example: 2018-03-17T09:30:00.001Z

The lastModified in the WHERE clause returns an error 500

The timestamp value must contain milliseconds.

At least two columns are required to configure 'dataobject query' object

This error is displayed when the query runs.

In Birst, the SELECT statement must query a minimum of two properties.

Exception occurred when executing SQL query: Property predicate is not supported.

The SELECT statement cannot include a property in the WHERE clause.

Invalid UTF-8 start byte 0x9b” is displayed during Birst data import.

A data object can be used in a query and return the correct results. The import into Birst fails with error:
“Invalid UTF-8 start byte 0x9b.” The error occurs because the source data objects are not in UTF-8
format. The solution is to format the source objects as UTF-8 and send them to the Data Lake again.

Infor ION Development Guide–Cloud Edition | 141

Data Lake queries

To omit the Data Lake object from a query, mark the object as corrupt. Corrupt objects are automatically
excluded from queries. See Retrieving Data Objects for information to mark Data Lake objects as
corrupt.

Alternatively, use the lastModified property to avoid the invalid object.

A SQL parsing error is displayed when retrieving data and object and property names contain
special characters, such as hyphens or slashes.

The property names with special characters, such as hyphen (-) and slash characters (/,\), must be
enclosed within double-quotes.

Query fails if the lastModified predicate uses > or < lastModified. Replace with >= or <=.

A query fails if the Data Lake has over 10,000 data objects to include in the query results. Update the
query predicate to use WHERE lastModified >= timestamp value or WHERE lastModified
<= timestamp value.

The query returns null values for integer, big integer or decimal data types.

The query results are returned in the data type defined in the object’s metadata, stored in the Data
Catalog. For example, if the metadata property is defined as an integer data type, the data type returned
is integer. If the data object contains a different data type, such as a decimal value, the query returns
a null value. If a null is returned, verify that the data object’s value matches the metadata data type. If
not, an option is to update the metadata definition in the Data Catalog to suit the payload values.

Unable to retrieve data for a request.

A data object that is selected by the query is invalid because the object is incomplete or invalid.

For JSON objects, ensure that each JSON tuple in the data object is complete.

For DSV objects used by the JDBC driver for Birst, ensure that the payload object does not contain
extra rows with only carriage return, line feed or carriage return and linefeed characters. An error is
displayed that the line contains a different number of fields than the header.

The message includes the Data Object ID, which is the unique identifier for a Data Lake object. Exclude
the data object from the query or mark the data object as corrupt. Data objects marked as corrupt are
automatically excluded from the results. Use the Data Object ID value to retrieve and review the data
object through Infor OS.

The locale function returned localized values, but the values are unexpected.

Verify that the Data Catalog Locale Selections are populated. The driver uses a default locale list when
no locale selections are available in the Data Catalog. You can select the Data Catalog locale selections
and use the Data Catalog Locale Selections function to add or update locale selections.

See the "Locale Selections" in the Infor ION Desk User Guide.

Infor ION Development Guide–Cloud Edition | 142

Data Lake queries

The query is hanging. No errors and no data are returned.

Verify that the environment running Birst Connect 2.0 agent has Java version 1.8 or later.

Data Lake Compass queries
Data Lake Compass query functionality provides robust query capabilities to search and extract results
from data stored in the Data Lake.

Query functionality is available through the ION Desk > Data Lake > Compass function, the Infor OS
datalakeapi Compass endpoint, and the Compass JDBC driver.

The Compass menu option provides a query editor through a user interface. See "Compass UI" in the
Infor ION Desk User Guide.

The Compass APIs provide methods to submit queries, poll for status, and retrieve results.

See Querying data objects on page 129.

The Compass JDBC driver may be set up with an SQL query tool. You can run queries through a local
SQL query tool.

Using Data Lake query, you can query new-line-delimited JSON objects and DSV objects that are
stored in the Data Lake. You can combine the JSON and DSV object data in queries using joins.

Query functionality and syntax
In general, the query language follows Microsoft SQL Server syntax. The purpose of this section is to
explain general query syntax, supported functionality and expressions for Data Lake Compass queries.

The documentation outlines special considerations for Data Lake queries. This documentation is not
intended as comprehensive SQL documentation.

Specific functionality for Apache Spark is also supported.

Compass queries may also use Infor

The Compass query syntax is the same regardless of the query method. The same query may be run
in the functions, keywords and administrative stored procedures.Compass ION Desk function, through
the Compass APIs, and through the Compass JDBC driver. The differences in the execution and output
formats are noted.

A prerequisite for all queries is Data Catalog metadata for data objects. You may query one or more
data objects in a query, and you may combine data object types in the same query. For example, a
query may select data from JSON objects joined to DSV objects.

Note: In the Data Catalog, object names are not case-sensitive. In the Data Catalog metadata, properties
are case-sensitive. For Compass queries, all object names and property names are case-insensitive.
Therefore, do not use duplicate property names in a data object with different capitalization. For example,

Infor ION Development Guide–Cloud Edition | 143

Data Lake queries

the Compass query functionality cannot detect a difference between properties named ITEM, Item and
item. Use distinct property names as a rule.

These characters are supported for object and property names:

• A through Z in upper or lower case
• 0 through 9
• Underscore
• Space

Use double-quotes around object names and property names that include an underscore or spaces,
or begin with a number. Use double-quotes around names that are SQL reserved words.

Query syntax is case-insensitive. The documentation uses uppercase to highlight the query functionality
and keywords. Uppercase is not required unless specifically noted for a function or keyword.

Data values in Data Lake data objects are case-sensitive. Values such as “ABC” and “abc” are distinct.

The expression syntax and special considerations are outlined for each function or expression. Note:

• Compass queries support SELECT statements and administrative EXEC stored procedures.
• Compass queries do not support CREATE, INSERT, UPDATE, DELETE, or DROP.
• Compass functions, keywords and administrative stored queries do not support the use of ; to

execute multiple queries.
Note: Query constructs, keywords, and functions that are not documented may work. But the query
results may not match the expected results and can change in a future release.

Query structure
SELECT

Use SELECT to select values from data objects stored in the Data Lake. Each value that is specified
in a SELECT is either:

• A property defined in the metadata for the data object.
• A literal value.
• A calculated value or expression.

The results are represented in rows and columns.

Data Lake is not a traditional transactional database. Data Lake stores every variation, or version, of
a record. Historic data is available, and historic versions of data is available. By default, a query
retrieves the highest variation of a record that is not tagged as deleted.

See Variation handling on page 166.

In the examples that are provided, dataobject represents the Data Catalog object, like a database
table. Property represents the Data Catalog object property, like a table column.

The query structure follows Microsoft SQL Server.

Syntax

SELECT one or more properties, expressions or literals
FROM dataobject
WHERE filter condition(s)

Infor ION Development Guide–Cloud Edition | 144

Data Lake queries

GROUP BY expression
HAVING filter condition(s)
ORDER BY expression [ASC | DESC]

FROM

Use a FROM clause to specify the data objects or subquery from which the selected values are stored
or derived. Compass queries may include data from more than one data object. See query functionality
for JOIN and Subqueries for information.

WHERE

Use a WHERE clause to specify filter conditions on which to base the results. Most Compass queries
should include a WHERE clause to limit the query results.

Queries executed through the Infor ION datalakeapi Compass API endpoint do not limit query
results. Therefore, a query, by default, returns all data.

The Data Lake may be used as a source of data to populate a data warehouse or a data store. It is
common to use initial load and incremental load logic. The initial load retrieves all data from Data Lake.
Subsequent queries retrieve incremental data, or data loaded since the last extract. You can use the
lastmodified timestamp on the WHERE clause of queries to retrieve incremental data.

See Queries for incremental data loads on page 158.

Note: Queries executed through the ION Desk > Data Lake > Compass function limit results to 100
rows.

GROUP BY

Use a GROUP BY to specify properties or expressions on which to group the results. If the group by
contains an expression, the expression must be in the SELECT clause as well. GROUP BY does not
support aggregation or windows expressions. GROUP BY references must be property names; alias
cannot be used.

HAVING

Use HAVING to specify conditions to filter the results. HAVING is commonly used with a SELECT
statement for an aggregated result set.

ORDER BY

Use ORDER BY to sort the result set columns. Use ASC or DESC to specify ascending or descending
order. Property names and aliases may be used. In Compass data storage, string values are
case-sensitive, which affects the result order.

UNION | UNION ALL

Use a UNION to union data objects into a common result set. Each selection in the union must have
the same number of selected properties, and the properties must have the same data types. Use a
UNION ALL to retrieve all values, including duplicates.

Syntax

Select * from dataobject1
UNION
Select * from dataobject2

Infor ION Development Guide–Cloud Edition | 145

Data Lake queries

EXCEPT

Use EXCEPT to return the results of the first query that are not included in the results of the second
query. Each selection must have the same data types.

Syntax

Select * from dataobject1
EXCEPT
Select * from dataobject2

INTERSECT

Use INTERSECT to return only the rows that are in the results of both the first and second queries.
Each selection must have the same data types.

Syntax

Select * from dataobject1
INTERSECT
Select * from dataobject2

WITH

A WITH clause, or common table expression, can be placed above the SELECT clause to use a
common table expression. The common table selected values can be used throughout the overall
query SELECT clauses. Note that with common table expressions,

Syntax

WITH commontablename AS
(SELECT property1 from dataobject1)
SELECT property1 FROM commontablename

SELECT ALL

Use select * to retrieve all values from the Data Objects referenced in the FROM clause of the query
or subquery.

Example: SELECT * from dataobject

SELECT TOP number of rows

Use the TOP clause to select the number of records from a result set. Use an integer to specify the
number of rows in the result set. TOP PERCENT and TOP WITH TIES are not supported.

Syntax

SELECT TOP number_of_rows * from dataobject

SELECT DISTINCT

Use DISTINCT to remove duplicate values from the result set. Use a property value to specify the
property in the data object on which duplicate values are based.

Syntax

SELECT DISTINCT property1 from dataobject

Infor ION Development Guide–Cloud Edition | 146

Data Lake queries

Note that the values in Data Lake are case-sensitive. The same values can be displayed in the results,
even though the only difference is the capitalization. For example, values ‘ABC’ and ‘abc’ are different
and both values are returned in a select distinct query. To perform a select distinct on case-insensitive
values, use upper or lower functions to convert values to upper- or lower-case characters.

SUBQUERIES

Subqueries are used to incorporate more than one SELECT in a query. The second, or subsequent
SELECT statements, may be in the main SELECT, the FROM or the WHERE and HAVING clauses.

A subquery in the FROM clause is referred to as an inline view. Compass queries do not support all
alias functionality for inline views. For example, a property alias in an inline view cannot have a second
alias in the outer query.

Correlated subqueries are not supported.

JOINS

Joins provide a method to query data from more than one data object. The joined objects, or tables,
are joined based on a relationship defined in the query. Compass queries supports joins for different
object formats. You can define a query joining data from JSON objects and DSV objects.

Syntax

select dataobject1.property1, dataobject1.property2, dataobject2.property1,
dataobject2.property2, dataobject2.property3 from dataobject1 [INNER JOIN
| OUTER JOIN | JOIN | LEFT INNER JOIN | LEFT OUTER JOIN | RIGHT JOIN | CROSS
JOIN] dataobject2 on dataobject1.property1=dataobject2.property1

CASE

Case expressions are used to evaluate a list of conditions and return one of multiple values.

Syntax

CASE condition_expression
 WHEN expression_value THEN result_expression
 WHEN expression_value THEN result_expression
 ELSE result_expression
END

String functions
The following string functions are supported.

CONCAT

Use CONCAT to concatenate one or more values into a string. Use single quotes around string literals.
Use double-quotes to enclose property names that begin with a digit or have spaces or other special
characters.

Syntax

CONCAT(property1,property1,expression) as concatenatedstring

Infor ION Development Guide–Cloud Edition | 147

Data Lake queries

LEFT

Use LEFT to return the left characters of a string expression, string literal or property value. The second
parameter, integer_value, is an integer that defines the number of leftmost characters to return.

Syntax

LEFT(stringproperty,integer_value)

RIGHT

Use RIGHT to return the right characters of a string expression, string literal or property value. The
second parameter, integer_value, is an integer that defines the number of characters to the right
to return.

Syntax

RIGHT(stringproperty,integer_value)

LOWER

Use the LOWER function to convert a character string to lowercase. This function is useful because
values in Compass data storage are case-sensitive, and LOWER and UPPER functions may be used
to convert characters to the same case for result or comparison purposes.

Syntax

LOWER(stringproperty)

UPPER

Use the UPPER function to convert a character string to uppercase. This function is useful because
values in Compass data storage are case-sensitive, and LOWER and UPPER functions may be used
to convert characters to the same case for result or comparison purposes.

Syntax

UPPER(stringproperty)

LTRIM

Use LTRIM to trim, or eliminate, the leading spaces of a character string.

Syntax

LTRIM(stringproperty)

RTRIM

Use RTRIM to trim, or eliminate, the trailing spaces of a character string.

Syntax

RTRIM(stringproperty)

TRIM

Use TRIM to trim, or eliminate, leading and trailing spaces from a character string.

Syntax

TRIM(stringproperty)

Infor ION Development Guide–Cloud Edition | 148

Data Lake queries

REPLACE

Use REPLACE to substitute a string for another. The first parameter is the string expression. The
second parameter is the original string to search. The third parameter is the replacement string.

Syntax

REPLACE(string_expression, search_string, substitute_string)

SUBSTRING

Use SUBSTRING to return a substring, or portion, of a string expression. The first parameter is the
string expression. The second parameter is the starting position. The third parameter is the number
of characters in the result. If the number of characters is negative, the result is an empty string.

Syntax

SUBSTRING(string_expression, start_position, number_of_characters)

CHAR

Use CHAR to return the ASCII character. The parameter is an ASCII character code. Compass queries
supports a range higher than the 255 ASCII codes.

Syntax

CHAR(ascii_code)

Mathematical operators
These mathematical operators are supported:
• Addition using the + character
• Subtraction using the - character
• Multiplication using the * character
• Division using the / character
• Percentage using the % character

You may also use + to concatenate values, such as strings.

Numeric functions
The following numeric functions are supported.

ISNUMERIC

Use ISNUMERIC to determine if a value or expression is numeric. If the expression is numeric, the
result is 1. If the result is not numeric, the value is 0.

Syntax

ISNUMERIC(expression)

CEILING

Use the CEILING function to return the smallest integer equal to or higher than the number value.

Syntax

Infor ION Development Guide–Cloud Edition | 149

Data Lake queries

CEILING(number_value)

FLOOR

Use the FLOOR function to return the highest integer equal to or less than the number value.

Syntax

FLOOR(number_value)

ROUND

Use the ROUND function to round a numeric value to the specified number of decimal places.

Syntax

ROUND(number_value, number_of_decimal_places)

Signed expression

Use a signed expression to convert a value or numeric expression from negative to positive or positive
to negative.

Syntax

SELECT –(numeric_expression)

Aggregation functions
The following aggregate functions are supported.

SUM

Use SUM to add numeric values and return a single value.

Syntax

SUM(numeric_expression)

AVG

Use AVG to average the results of numeric values in a result.

Syntax

AVG(numeric_expression)

COUNT

Use COUNT to count the number of records returned in a query. COUNT may also be used with
COUNT DISTINCT to count the number of unique rows.

Syntax

COUNT(expression)

COUNT(DISTINCT expression)

MAX

Use MAX to return the highest, or maximum value, from a set of values. MAX does not support Boolean
properties.

Syntax

Infor ION Development Guide–Cloud Edition | 150

Data Lake queries

MAX(expression)

MIN

Use MIN to return the lowest, or minimum value, from a set of values. MAX does not support Boolean
properties.

Syntax

MIN(expression)

Datetime functions
The following datetime functions are supported.

CURRENT_TIMESTAMP

Use the CURRENT_TIMESTAMP function to return the current datetime. The timestamp value returned
is in UTC in ISO8601 RFC3339 format.

Syntax

select current_timestamp

Result example

2019-09-01T09:30:00.000Z

DATEADD

Use the DATEADD function to add or subtract date units for a date. The result is a date or timestamp.
The first parameter is the datepart, such as yy for year or month. The second parameter is the number
of units to add. The number may be positive or negative. The third parameter is the date or timestamp
value or expression.

Syntax

DATEADD(datepart,number_of_units,date_expression)

DATEDIFF

Use the DATEDIFF function to return the number of date part units between two dates or timestamps,
such as the number of days between two dates or the number of hours between two timestamps. The
result is a number. The first parameter is the datepart, such as yy for year or month. The second and
third parameters are the date or timestamp values to compare.

Syntax

DATEDIFF(datepart,date_expression,date_expression)

DATEPART

Use the DATEPART function to return the value of a specific part of a date or timestamp. For example,
return the hour of a timestamp or the month of a date. The first parameter is the datepart, such as yy
for year or mm for month. The second parameter is the date or timestamp expression.

These date part formats are not supported: %D, %U, %u, %V, %w, and %X.

Syntax

DATEPART(datepart,date_expression)

Infor ION Development Guide–Cloud Edition | 151

Data Lake queries

GETDATE

Use the GETDATE function to return the current date and time. The timestamp is in UTC in ISO8601
RFC3339.

Syntax

select GETDATE()

GETUTCDATE

Use the GETDATE function to return the current date and time. The timestamp is in UTC in ISO8601
RFC3339.

Syntax

select GETUTCDATE()

Logical and comparison operators
The following operators are supported.
• AND
• BETWEEN
• IS NULL
• IS NOT NULL
• LIKE
• NOT LIKE
• OR
• GREATER THAN using the > character
• GREATER THAN OR EQUAL TO using the >= characters
• LESS THAN using the < character
• LESS THAN OR EQUAL TO using the <= characters
• ANY
• ALL
• SOME

Do not use the syntax of single quotes with or without spaces to evaluate NULL and NOT NULL
conditions. The following query syntax will produce unreliable results:

=''
=' '
<>''
<>' '

Wildcard characters using % and _ are supported. Wildcard characters using [] and [^] are not
supported.

Compass data values are case-sensitive. Values ‘abc’ and ‘ABC’ are not equal.

Compass queries, in general, compare strings to integers and vice versa, for comparisons such as
where order_number = 123 or order_number= '123'.

Infor ION Development Guide–Cloud Edition | 152

Data Lake queries

Conversion functions
The following conversion functions are supported:

CAST

Use CAST to cast a value or expression to a data type. The first parameter is the expression or value.
The second parameter is the data type for the result. If the value cannot be cast to the requested type,
the result is NULL.

Syntax

CAST(expression AS data_type)

CONVERT

Use CONVERT to convert a value or expression to a data type.

CONVERT datetime to string

Use the CONVERT function to convert a string to a specific datetime style. The first parameter is the
string datatype and size, such as varchar(20), the second parameter is a datetime expression, the
third parameter is the date_style, or the style number. Style numbers are defined by Microsoft SQL
Server. Date expressions are not supported. Date time styles 130 and 131 are not supported.

Syntax

CONVERT(string_type, datetime_expression, date_style)

CONVERT string to datetime

Use the CONVERT function to convert a date or datetime to a string. The first parameter is the date
or datetime type. The second parameter is the string expression. Date expressions are not supported.

Syntax

CONVERT(datetime_expression,string_expression)

Analytic functions
These analytic functions are supported:

ROW_NUMBER … OVER … PARTITION BY

Use the ROW_NUMBER function to number the result set. If a partition is used, the row number of
the row within the partition is returned. Use ORDER BY to sort the results.

Syntax

ROW_NUMBER () over ([PARTITION BY value_expression1, value_expression2,
…] order by …)

RANK …OVER … PARTITION BY

Use the RANK function to rank, or number, the row results. If a partition is used the rank is the number
of the row within the partition. RANK is used WITH TIES to assign the same rank value to tied results.

Syntax

RANK () over ([PARTITION BY value_expression1, value_expression2, …]
order by …)

Infor ION Development Guide–Cloud Edition | 153

Data Lake queries

LEAD

Use the LEAD function to access data from the following or a subsequent row of a result set. The first
parameter is the expression to select a value from a subsequent row. The second parameter is the
offset, such as 1, to indicate the following row. The third parameter is the default, or substitute, value
to use if the subsequent row reference is not available.

Syntax

LEAD (expression, offset_value, default_value) over (partition_by … order_by
…)

Spark query functionality
Compass queries support a limited set of Spark query functionality. This section only includes Spark
functionality that is not available in SQL Server or does not specifically match SQL Server.

Query syntax
LIMIT

LIMIT is used to limit the result set to a specified number of rows.

Syntax

Select * from dataobject LIMIT number_of_rows

Datetime functions
Compass queries base all Data Lake timestamp data in the UTC timezone. Queries that use timestamp
values are always considered in UTC.

DATE_FORMAT

Use DATE_FORMAT to convert a datetime to a string. The first parameter is the timestamp expression.
The second parameter is the format style, for example, ‘YYYY-MM-DD’.

Syntax

DATE_FORMAT(timestamp_expression, format)

DATE_TRUNC

Use DATE_TRUNC to truncate a timestamp and convert it to the specified datetime unit. The first
parameter is the datetime unit. The parameter is enclosed in single quotes. The second parameter is
the timestamp value.

Syntax

DATE_TRUNC('YYYY',timestamp_expression)

CURRENT_TIMESTAMP

Use CURRENT_TIMESTAMP to return the current datetime. The datetime is in UTC.

Infor ION Development Guide–Cloud Edition | 154

Data Lake queries

Syntax

Select CURRENT_TIMESTAMP

ADD_MONTHS

Use ADD_MONTHS to add or subtract months from a date. The first parameter is the date expression.
The second parameter is the number of months to add or subtract from the date.

Syntax

select ADD_MONTHS(date_expression, number_of_months)

YEAR

Use YEAR to return the year from a date expression.

Syntax

select YEAR(date_expression)

LAST_DAY

Use LAST_DAY to return the last day of the month associated with a date or datetime.

Syntax

select LAST_DAY(date_expression)

TRUNC

Use the TRUNC function to truncate a date or timestamp to a year or month. The result is a date.

Syntax

INT(trunc(current_date),'MM’)

UNIX_TIMESTAMP

Use UNIX_TIMESTAMP to convert a date expression to UNIX timestamp format. The first parameter
is a date or timestamp. The second parameter is the format of the date expression, such as
‘yyyy-MM-dd’. The date_format parameter is not required if the date_expression references a date or
datetime property in Compass data storage.

Syntax

select UNIX_TIMESTAMP(date_expression,'date_format')

Comparison functions
NVL

Use NVL to evaluate an expression and return a substitute value if the expression is NULL. The first
parameter is the expression. The second parameter is the substitute value.

Syntax

select NVL(expression, substitute_value)

NVL2

Use NVL2 to evaluate an expression and determine if the value is null or not null. Define a substitute
value for a not null condition and a substitute value for a null result. The first parameter is the expression,

Infor ION Development Guide–Cloud Edition | 155

Data Lake queries

the second parameter is the substitute value for a not null condition. The third parameter is the substitute
for a null condition. The second and third parameters must be the same data type.

Syntax

select NVL2(expression, substitute_value_for_not_null, substitute_value_for_
null)

CEIL

Use CEIL to return the smallest integer greater than or equal to the numeric expression value.

Syntax

select CEIL(numeric_expression)

String functions
INSTR
Use INSTR to return the position of the first occurrence of substring within a string.

Syntax

INSTR('http://www.infor.com', 'www')

Result: 8

LENGTH

Use LENGTH to return the length, or size, of a string expression. An empty string returns 0 length.

Syntax

select LENGTH(string_expression)

LPAD

Use LPAD to pad the left of a string with values up to an overall string length. The first parameter are
the padding characters; enclose the characters with single quotes. The second parameter is the string
expression. The third parameter is the overall length.

Syntax

select LPAD('padding_characters',string_expression, overall_length)

RPAD

Use RPAD to pad the right of a string with values up to an overall string length. The first parameter
are the padding characters; enclose the characters with single quotes. The second parameter is the
string expression. The third parameter is the overall length.

Syntax

select RPAD('padding_characters',string_expression, overall_length)

SUBSTR

Use SUBSTR to return a substring of a string. The first parameter is the string expression. The second
parameter is starting position for the substring. The third parameter is the number of characters for
the substring. The third parameter is optional.

Syntax

Infor ION Development Guide–Cloud Edition | 156

Data Lake queries

select SUBSTR(string_expression, start_position, number_of_characters)

Comparison functions
GREATEST

Use GREATEST to return the highest value from a list of parameters.

Syntax

select GREATEST(parameter1, parameter2, parameter3)

Infor functionality
Data Lake queries can contain keywords and functions proprietary to Infor. The functionality is useful
to retrieve specific data from Data Lake, such as incremental load data. It is also used to retrieve
localized string values from data objects.

Additional functionality allows you to view specific data object properties, such as the Data Lake data
object ID, which allows you to trace a record back to a specific Data Lake payload object.

Queries for localized data
The locale keyword is used to select localized string values stored in data objects in the Data Lake.

The locale keyword is used to select localized string values stored in data objects in the Data Lake.
For information on localized data, see “Data Selections for Localized String Data”. For Compass queries,
the localized data is stored in Compass data storage when a query is run. Therefore, it is critical that
the Locale Selections are defined before you query the data object.

If the Data Catalog locale selections are updated after data is stored in Compass data storage, use
the administration stored procedure to clear the table and data. The next time a query is run, Compass
data storage uses the current locale selections and includes the localized values stored in the Data
Lake.

LOCALE keyword

Syntax

select locale(property,number of positions) from dataobject

Example

The localized property name is “greeting”, and the localized string is “hello” in en_US, “bonjour” in
fr_CA and “hola” in Spanish. The Data Catalog locale selections are position 1, en_US, position 2,
fr_CA and position 3, es_ES.

select locale(greeting,3) from dataobject

Results

greeting_1, greeting_2, greeting_3

Infor ION Development Guide–Cloud Edition | 157

Data Lake queries

hello, bonjour, hola

The locale keyword is case-insensitive. If the property name is not distinct, prefix the property with the
data object or alias name, such as locale(product.name, 5). The number of positions defines the
number of numbered columns in the result. The locale keyword works in conjunction with the Data
Catalog Locale Selections.

You can also query the data object to show all the localized strings using the locale codes as the suffix
of the column names.

You can also view the localized strings with the locale suffixes using a select * query. To achieve
this, you can use the includeInSelectAll query hint in combination with the L parameter.

See Query hints on page 164.

If the Data Catalog Locale Selections change, it may be necessary to clear the data object’s Compass
data storage and Compass object definitions. When new locales are added to the Data Catalog, such
as Portuguese and Italian, clear the object definition using the Infor Clear Table stored procedure.
This process clears the object definition that includes the original locales but not the new locales of
Portuguese and Italian.

It may also be necessary to clear the Compass data. If historic objects contain localized strings for
Portuguese and Italian, clear the data. To clear the Compass data, use the Infor Clear Table with the
option to clear reformatted data. Alternatively, use the Infor Clear Data option to clear Compass data.
The next time a query runs, the Portuguese and Italian strings in the data are populated.

Alternatively, if the historic data does not include Portuguese and Italian strings, it does not have to
be cleared. Queries for historic data have NULL values for Portuguese and Italian.

Data Catalog locale selections

Select the Data Catalog locale selections to associate the localized string position numbers with
localized string values. The query returns the locale codes defined the Data Catalog Locale Selections
function.

Syntax

select * from datacatalog.locale_selection

Queries for incremental data loads
The Data Lake contains every version, or variation, of a record. Each record in Compass data storage
is associated with the Data Lake object ID and the Data Lake object datetime. The object datetime is
the timestamp in which the data object “payload” was added to the Data Lake. The timestamp is a
property of the payload object itself; it is not a property in the object or defined the data object metadata.
The timestamp is referred to as the lastmodified property.

The lastmodified value is commonly used for incremental loads, so a full result set is not retrieved each
time a query is run. For example, you can use a lastmodified value in a WHERE clause to retrieve data
from data objects loaded on or after a specific datetime, such as 2019-09-01T09:30:47.323Z. Note
that all lastmodified timestamps are in UTC in ISO8601 RFC3339 format with three fractional seconds.

The lastmodified value is available through two methods:

• You can use the infor.lastmodifed() function to select the lastmodified value. The parameter
for the function is the data object or alias that is referenced in the query.

Infor ION Development Guide–Cloud Edition | 158

Data Lake queries

• You may add the lastmodified value to a query as a synthetic property. The property is synthetic
because it is not defined in a data object’s metadata.

Note: The infor.lastmodified() function is recommended over the lastmodified synthetic property.
We recommend the function because it avoids contention with any data object that may have an actual
lastmodified property.

You can also use the lastmodified synthetic property or the infor.lastmodified() function in the
SELECT clause of the query to select the lastmodified value for each record.

You may also reference the value in the WHERE clause, GROUP BY, HAVING, and ORDER BY
clauses, and in datetime functions.

Select the last modified value using the INFOR.LASTMODIFIED() function

Use the infor.lastmodified() function in the select clause of a query to return the timestamp
that a record was added to the Data Lake. If the query includes more data objects, such as a query
with a join, use the infor.lastmodified('dataobject or alias') function with a parameter
that specifies the dataobject or alias on which the lastmodified value is based.

Note that the infor.lastmodified() function is case-insensitive. The function parameter is the
data object or alias referenced in the query. If the query selects data from only one data object, the
parameter is optional. If the query selects data from more than one data object or alias, the parameter
is required. The data object or alias parameter must be enclosed with single quotes.

Use an alias for the function to distinguish the value in the result.

Example:

select property1, property2, infor.lastmodified() as dataobject_lastmodified
from dataobject

As an alternative, use the object name or alias as a parameter. The parameter must be enclosed within
single quotes.

Example:

select property1, property2, infor.lastmodified('dataobject') as dataob
ject_lastmodified from dataobject

Result: the dataobject_lastmodified value is the Data Lake document timestamp in UTC.

Examples for a query using multiple data objects:

select do1.property1, do2.property5, infor.lastmodified('dataobject1') as
dataobject1_lastmodified from dataobject1 do1 inner join dataobject2 do2 on
do1.property1=do2.property1

Alternate method using the data object alias:

select do1.property1, do2.property5, infor.lastmodified('do1') as dataob
ject1_lastmodified from dataobject1 do1 inner join dataobject2 do2 on
do1.property1=do2.property1

Result: the last modified value is based on the record in dataobject1.

Infor ION Development Guide–Cloud Edition | 159

Data Lake queries

Select the last modified value using the LASTMODIFIED property

Select the lastmodified value in query to return the timestamp that a record was added to the Data
Lake. If the query includes more data objects, such as a query with a join, use the lastmodified with a
table or alias prefix on which the lastmodified value is based.

Note that the lastmodified property is case-insensitive. If the query combines data from more than one
data object, the lastmodified property must be prefixed with the data object or alias.

Note that using the infor.lastmodified() function is the recommended method because the
lastModified name may conflict with properties in the data object.

Example: select property1, property2, lastmodified from dataobject

Result: the lastmodified value is the Data Lake document timestamp in UTC.

Example for a query using multiple data objects:

select do1.property1, do2.property5, dataobject1.lastmodified from dataob
ject1 do1 inner join dataobject2 do2 on do1.property1=do2.property1

Result: the lastmodified value is based on the record in dataobject1.

Use the INFOR.LASTMODIFIED() function in a WHERE clause for an incremental data load

Use the infor.lastmodified() function in the WHERE clause of a query to filter results to a subset
of records. The infor.lastmodified() function may be used for incremental data loads, to select
only data that was loaded to the Data Lake since the previous update date.

The infor.lastmodified() function supports these operators:

• =
• >=
• <=
• BETWEEN

The timestamp value in a WHERE clause may be a timestamp in UTC in ISO8601 format with three
milliseconds: YYYY-MM-DDThh:mm:ss.sssZ. It may also be a date or a timestamp that does not
include milliseconds.

Example: select property1,property2 from dataobject where infor.lastmodi
fied()>= '2019-09-01T09:30:47.434Z'

Example for a query using multiple data objects:

Example: select do1.property1, do2.property5, do1.lastmodified from dataobject1
do1 inner join dataobject2 do2 on do1.property1=do2.property1 where in
for.lastmodified('do2') >='2019-09-01T09:30:47.434Z'

Query number, date and timestamp general and unparseable values
Compass data for numbers, including integers and big integers, dates and timestamps are stored in a
general format for Compass queries. The general format is designed to be more accommodating of

Infor ION Development Guide–Cloud Edition | 160

Data Lake queries

decimal sizes and allowable values. This allows for Data Catalog data object metadata changes that
do not require data to be reloaded into Compass data storage.

Data Catalog metadata for integers, big integers and decimals are all stored in Compass data storage
as decimal(38,15). For example, if the Data Catalog metadata definition for a “quantity” is initially defined
as a data type of integer. Values in the payload, though, include decimal values. The decimal values
are stored in the general format of decimal(38,15). Later, the metadata definition is updated to a number
data type with 2 decimal places. The Compass data does not have to be cleared and reloaded since
the data is already stored as a decimal. A query for an integer value that has a decimal value in the
Data Lake results in a NULL value. If the value is used in an aggregation or numeric function, the
general data type is used.

Dates and timestamps, in the default format and Data Catalog available formats, are stored as
timestamps in UTC

When data is converted to Compass data storage, if the general data type matches the payload values,
the data is stored in the “general” format columns. If the data cannot be stored as a number or datetime,
the value is unparseable. The unparseable value is stored in Compass as a string.

INFOR.SHOW_VALUE

The infor.show_value function is used to display the general values. If the value cannot be stored
in the general format, you can query for the original value that could not be resolved as a number or
timestamp.

Syntax:

select infor.show_value(property, 'general')

select infor.show_value(property, 'original')

The first parameter is the property name. Use double-quotes around property names that begin with
digits or include spaces.

The second parameter is general or original. General format displays the general format of the value
as decimal(38,15). Original value displays a string value. If the actual value from the payload is a
number, date or timestamp and is stored in the general format, it does not appear on a request for the
original format. Only values that could not be stored in the general format are stored in the original
string format.

Infor functions
INFOR.CONCAT2 through INFOR.CONCAT6

infor.concat2, infor.concat3, infor.concat4, infor.concat5 and infor.concat6 allow you to concatenate
two to six properties, literals or expressions together using a separator value. The number at the end
of the function name determines the number of values that are concatenanted.

The first parameter is the separator character string. Use single quotes around the value to signify a
string literal.

The second parameter determines if the separator is used after the first value if the subsequent value
in the string is NULL. Specify Y or y if the separator is used when the following string is NULL.

The remaining parameters are the properties, literals or expressions to concatenate. The concatenation
values may be strings. If an integer property is used, the value is converted to a string. If a date is

Infor ION Development Guide–Cloud Edition | 161

Data Lake queries

used, a datetime value is displayed in the results. Therefore, cast a date to a string to eliminate the
time component. If a Boolean value is used, the result is true or false.

Syntax:

select infor.concat2('string','y',property1,property2)from dataobject

select infor.concat3('string','y',property1,property2,property3) from
dataobject

select infor.concat4('string','y',property1,property2,property3,property4)
from dataobject

select infor.concat5('string','y',property1,property2,property3,proper
ty4,property5) from dataobject

select infor.concat6('string','y',property1,property2,property3,proper
ty4,property5,property6) from dataobject

Example:

select infor.concat2('-','y',productid,productname) as productid_name from
products

Result:

productid_name

12345-Pencil

23456-Pen

34567-Marker

select infor.concat6(',','y',street_address, apartment_suite,city,state,coun
try) as address from customer_address

Result:

address

1250 Sunrise Place, 410, Orlando, Florida, USA

5067 Main Street, Orlando, Florida, USA

4325 Atlantic Avenue, 30B, Orlando, Florida, USA

In this example notice that the comma separator between street and city is not used if the
apartment_suite value is null.

INFOR.DATETIME_TO_TIMESTAMP

The infor.datetime_to_timestamp function allows you to add hours and minutes to a date or timestamp
value. The result is a timestamp. Note that the result format may vary depending on the query tool.
All Compass queries return values in UTC time.

Syntax:

select infor.datetime_to_timestamp(datetimeproperty, 'hhmm')from dataobject

Example:

select orderdate,infor.datetime_to_timestamp(orderdate,'0230') as updated_or
derdate from orders

Result:

orderdate, updated_orderdate

Infor ION Development Guide–Cloud Edition | 162

Data Lake queries

2019-07-13T08:00:00.000Z, 2019-07-13T10:30:00.000Z

The first parameter is the date or timestamp value. Use single quotes around the value to signify a
string literal.

The second parameter value of hhmm is the hours and minutes to add to the datetime. The hour range
is 00-24, and the minute range is 00-59. If the parameter is 2400, the date part of the first parameter
is used and the time is set to 23:59:59.999.

INFOR.TIMESTAMP_TO_STRING

The infor.timestamp_to_string function allows you return all or part of a timestamp as a string. You
may select to return only the date, the datetime or the full datetime with fractional seconds. The result
is a string with no separator characters.

Syntax:

select infor.timestamp_to_string(datetime_expression,'Date')from dataobject

select infor.timestamp_to_string(datetime_expression,'Time')from dataobject

select infor.timestamp_to_string(datetime_expression,'Full')from dataobject

The first parameter is the timestamp value.

The second parameter value is Date to return a date as a string, The Time parameter returns the date
and time to the second. The Full parameter returns the datetime with fractional seconds. Note that
Date, Time and Full parameters are case-sensitive and must be enclosed within single quotes.

INFOR.STRING_TO_TIMESTAMP

The infor.string_to_timestamp function uses a date and adds hours, minutes, seconds and fractional
seconds to it. The result is a timestamp. The third parameter is the level of granularity for the result,
for example, at the hour, minute or second level. The fractional seconds are not used.

Syntax:

select infor.string_to_timestamp(dateproperty,'hhmmssf')from dataobject

Example:

select orderdate,infor.string_to_timestamp(orderdate,'0800000','Hours') as
datewithhours, infor.string_to_timestamp(orderdate,'043000','Minutes') as
datewithminutes,infor.string_to_timestamp(orderdate,'03333333','Seconds')
datewithseconds from orders

Result:

orderdate, datewithhours,datewithminutes,datewithseconds

2019-07-13, 2019-07-13 08:00:00,2019-07-13-04:30:00, 2019-07-13-03:33:33.000

The first parameter is the date value.

The second parameter value are the hours, minute and seconds to add to the date. The format is
‘hhmmssf’ where hh are the hours, mm are the minutes and ss are the seconds. Fractional seconds
are not used. Enclose the value in single quotes.

The third parameter is the level of granularity of the timestamp result. The options are Hours, Minutes
or Seconds. The values are case-sensitive and enclosed with single quotes. ‘Hours’ is based on the
hh value. Values for mmssf are not used. ‘Minutes’ is based on the hhmm value. Values for ssf are
not used. ‘Seconds’ is based on the hhmmss value. Fractional seconds are not used.

Infor ION Development Guide–Cloud Edition | 163

Data Lake queries

INFOR.SPLIT_VALUE

The infor.split_value function returns a portion of a string, based on a separator within the string. It is
used to return a component of a string. For example, a multi-part customer account value is
001-324-26358213. Use the split value function to return only the third component, 26358213. The
first parameter is the separator to locate in the string. The second parameter is the component.
Component numbers 0 and 1 both return the first component of the string. The third parameter is the
string.string to return based on the position of the separator in the string.

Syntax

infor.split_value('separator',compontent,string_expression)

Example

infor.split_value('-',3,'001-324-26358213')

Result

26358213

Query hints
Hints provide extra instructions to execute a query. Hints must be placed on the first lines of the query,
before the SELECT or WITH clause. Query hints are optional, and one or more hints may be used.
The hint syntax starts with two hyphens followed by an asterisk: –*.Hints are case insensitive, but they
are documented with mixed case to distinguish the hint syntax.

includeAllVariations

This hint is used to return all variations of a record from the Data Lake.

For details and examples, see Variation handling on page 166.

The hint may be used to specify one or more data objects used in the query. Alternatively, you may
use object aliases if the object is referenced more than once in a query.

Syntax

--*includeAllVariations=<<dataobject or alias>>/<<dataobject or alias>>

Add the hint before the first line of the query. The syntax is --*includeAllVariations and is
case-insensitive. Do not use spaces or other characters in a hint. After the = , specify one or more
data objects or aliases used in the query. Separate each value with a forward slash / . A data object
reference applies to all data object references in the query, regardless of aliases. An alias reference
applies the hint logic to the specific data object alias references only. Any data objects or alias that
are not referenced in a hint, by default, return the maximum variation of each record, excluding records
in which the maximum variation is deleted.

includeDeletionsWithMaxVariations

This hint is used to return the maximum, or highest, variations of a record from the Data Lake, regardless
of the deletion indicator status.

For details and examples, see Variation handling on page 166.

The hint may be used to specify one or more data objects used in the query. Alternatively, you may
use object aliases if the object is referenced more than once in a query.

Syntax

Infor ION Development Guide–Cloud Edition | 164

Data Lake queries

--*includeDeletionsWithMaxVariations=<<data object or alias>>/<<data object
or alias>>

Add the hint before the first line of the query. The syntax is --*includeDeletionsWithMaxVariation and
is case-insensitive. Do not use spaces or other characters in a hint. After the = , specify one or more
data objects or aliases used in the query. Separate each value with a forward slash / . A data object
reference applies to all data object references in the query, regardless of aliases. An alias reference
applies the hint logic to the specific data object alias references only. Any data objects or alias that
are not referenced in a hint, by default, return the maximum variation of each record, excluding records
in which the maximum variation is deleted.

includeInSelectAll

This hint adds additional properties to the results of a SELECT * query. The hint may include one or
more parameters: S for synthetic properties, G for generated properties, P for the data storage partition
and L for localized string values.

Parameters

• S for Synthetic properties

Synthetic properties are properties associated with the Data Lake “payload” object. The payload
object is the object stored in the Data Lake. The properties are lastModified and dataObjectId.

• lastModified

lastModified is the timestamp in which the data object was added to the Data Lake.

• dataObjectId

dataObjectId is the unique identifier of the Data Lake object from which the record is stored.

The lastModified and dataObjectId are associated with each record and are used for traceability
back to a specific object stored in the Data Lake. Use the dataObjectId to find a specific data
object by using the Data Lake API streambyID. Each payload may contain one or more records,
or tuples. Therefore, you may have the same dataObjectId and lastModified associated with more
than one record in a result set.

• G for Generated properties

Generated properties are properties added by Compass query services. The only generated
property is autogenerated_timestamp.

autogenerated_timestamp

autogenerated_timestamp denotes the time in which the record was converted and stored for Data
Lake queries.

• P for the Partition property

The Partition property is the partition, or segment, of the Compass query data storage in which
the record is stored. The partition column name is rd.

• L for Localized properties

Localized properties are localized string values. Using the parameter returns the results for localized
string data stored in the payload objects. Note that each localized string has a locale code suffix.
The locale codes included match the locale codes defined in the Data Catalog Locale Selections.

See Queries for localized data on page 157.

Use one or more parameters and separate each parameter with a forward slash /.

Syntax

Infor ION Development Guide–Cloud Edition | 165

Data Lake queries

--*includeInSelectAll=S/G/P/L

Example

--*includeInSelectAll=S/G/P

select * from products

Results: The results include all properties from products, and they include the additional properties:

. . . ,lastmodified, dataobjectid, autogenerated_timestamp, rd

2019-08-09T10:30:23.232Z, 8d963652-4a02-4c5a-bd37-26872593872c, 12, 2019-
08-09T11:13:07.317Z,2019-08-09

Example for localized strings

--*includeInSelectAll=L

select * from salutations

Results include all localized string properties. In the example, the property greeting is a localized string,
and the locales are US-English, French Canadian and Spanish:

greeting_en_us, greeting_fr_ca, greeting_es_es hello, bonjour, hola

skipReformatting

This hint bypasses the process to convert raw objects to the Compass query format before executing
the query. This hint is useful to verify the query syntax or to view data that has already been converted.

Note: Do not use this hint to retrieve a full result set, because the results do not include any new data
loaded to the Data Lake.

The skipReformatting hint does not include parameters. The hint skips the data conversion process
for all data objects referenced in the query.

Syntax

--*skipReformatting

Variation handling
Variation handling is based on the Data Object’s metadata properties, defined in the additional properties
for identifierpaths, variationpath and deleteindicator.

The identifierpaths property defines the property or properties, that comprise the primary key of a data
object. For example, a Products data object may have Company and ProductID defined as the
identifierpath properties, to signify that each product has a distinct company and product ID.

The variationpath is the property that defines a sequence structure for lower and higher variations.
Lower variations signify earlier states, or versions of a record, and higher variations signify changes
as updates are made to the record. Variations are generally integers. For example, the first version of
a product is 1 when the order is created, 2 when the product is updated, 3 when the product is closed.
Any update to the product triggers a new record, or variation, to be sent to the Data Lake.

The deleteindicator is a property that signifies that the record is physically or logically deleted from the
source. For example, if a product is deleted, the deleted flag is set to true.

Example: Products

Infor ION Development Guide–Cloud Edition | 166

Data Lake queries

The example illustrates product records stored in the Data Lake. The identifier path, or primary key, of
the records is Company+ProductID. The Variation column is the variation, or version, associated with
each primary key. Notice that the Data Lake stores multiple variations, or versions, of each record,
indicating the historic and current records. The DeletedFlag value of true or false indicates that a record
was physically or logically deleted from the source, but the record exists in the Data Lake.

DeletedFlag

DeleteIndica-
tor

Variation

VariationPath

PriceDescriptionProductID

IdentifierPath

Company

IdentifierPath

false1300Bike991041001

true2350Bike991041001

false1129Scooter222333002

false2132Scooter222333002

false1175Skateboard12345003

true2195Skateboard12345003

false3205Skateboard12345003

There are three methods to query Data Lake data for variations.

• Select the maximum variation of each record and exclude deleted records.
• Select all variations of each record.
• Select the maximum variation of each record and include records in which the maximum variation

is deleted.

Select the maximum variation of each record and excluded deleted
records
This logic matches most transaction systems. If a record is deleted, then the references to that record
are physically or logically deleted. The purpose of this logic is to make the Data Lake appear as a
regular transaction database, where records that are physically or logically deleted do not appear in
query results.

This is the default behavior for all queries, so no query hint is required.

Query:

select * from Products

Result:

DeletedFlag

DeleteIndica-
tor

Variation

VariationPath

PriceDescriptionProductID

IdentifierPath

Company

IdentifierPath

false2132Scooter222333002

Infor ION Development Guide–Cloud Edition | 167

Data Lake queries

DeletedFlag

DeleteIndica-
tor

Variation

VariationPath

PriceDescriptionProductID

IdentifierPath

Company

IdentifierPath

false3205Skateboard12345003

The results include highest variation, variation 2, of record the for company 002, productID 222333,
and the highest variation, variation 3, of the record for company 003, productId 12345. The record for
company 001, product 991041 is not in the results because the maximum variation, variation 2, has a
deleted status.

Select all variations of each record

Select all variations of records, regardless of the deleted indicator status. This logic is used to return
historic and current records, and it may be used for auditing purposes or incremental data loads. The
logic is useful to find a specific variation of a record, such as the version of the record when the record
was created or updated to a specific status.

Select all variations
Use a query hint to return all variations for a data object or an alias reference in a query.

For details about the includeAllVariations hint, see Query hints on page 164.

Query:

--*includeallvariations=products

select * from Products

DeletedFlag

DeleteIndica-
tor

Variation

VariationPath

PriceDescriptionProductID

IdentifierPath

Company

IdentifierPath

false1300Bike991041001

true2350Bike991041001

false1129Scooter222333002

false2132Scooter222333002

false1175Skateboard12345003

true2195Skateboard12345003

false3205Skateboard12345003

The results include all variations of all records, regardless of status.

Infor ION Development Guide–Cloud Edition | 168

Data Lake queries

Select the maximum variation of each record and include deleted records

This logic returns the maximum variation of each record, regardless of the deleted indicator. The highest
variation of a record is returned, even if the highest variation record status is deleted. This logic is
useful when the query joins tables, and a record may be deleted in one table but referenced in another.

Select all variations and include deleted records
Use a query hint to return the maximum variations including deleted records, for a data object or alias
refrenced in a query.

For details about the includeDeletionsWithMaximumVariations hint, see Query hints on page
164.

Query:

--*includeDeletionsWithMaxVariations=products

select * from Products

DeletedFlag

DeleteIndica-
tor

Variation

VariationPath

PriceDescriptionProductID

IdentifierPath

Company

IdentifierPath

true2350Bike991041001

false2132Scooter222333002

false3205Skateboard12345003

The results include highest variation of each record, regardless of the deleted status. The results include
variation 2 of the record for company 001, productID 991041, variation 2 of the record for company
002, productID 222333, and the highest variation, variation 3, of the record for company 003, productID
12345.

Data Lake database schemas
The Data Lake incorporates schemas to separate data sets.
• Default

The Data Lake data schema is Default. All the data objects stored in the Data Lake, and registered
in the Data Catalog, will be retrieved from the Default schema.

• DataCatalog

The Data Catalog schema contains Data Catalog data. Currently, the Data Catalog contains the
Locale Selections, which are defined in the Data Catalog, Locale Selections function. Use the
DataCatalog Locale Selections query to retrieve the locale codes, positions and substitute locales.

See Queries for localized data on page 157.

• Information_Schema

Infor ION Development Guide–Cloud Edition | 169

Data Lake queries

The Information_Schema schema contains the schemata, tables and columns for Data Lake objects.
Use the following queries to retrieve values.

Syntax:

select * from information_schema.schemata

Syntax:

select * from information_schema.tables

To retrieve a list of properties for a data object. Note that the columns data is dependent on Compass
query activity. If a data object has not been referenced in a query, the column metadata is not included
in the results.

select * from information_schema.columns where table_schema='default' and
table_name='dataobject'

To retrieve a list of data objects registered in the Data Catalog:

select * from information_schema.tables where table_schema='default'

Query processing
Compass queries are processed through a series of steps before the query returns results. The primary
query steps are converting, or transforming, the Data Lake data and executing the query.

The data conversion steps read Data Lake data objects, also called “payloads”, data and convert the
data to store it more efficiently for query purposes. This process involves retrieving the Data Lake DSV
and newline-delimited JSON object data and converting it. The process also segments the data into
partitions. The partitions divide the data, making it more efficient for a query to read. The partitioning
method groups the data by the Data Lake addition date, referenced by the lastmodified property. This
is the date that the data object is added to the Data Lake. This partitioning scheme is relevant for
incremental data loads.

The Data Catalog object metadata is critical to the data conversion process. The object metadata
provides the instructions used to process the data object schema into a table and column structure
used by the queries. Several components of the metadata definition that are used are noted in the
query considerations and best practices.

When Data Catalog data object definitions are updated, it may be necessary to clear the current data
storage definition, the Compass data storage or both.

See Handling Data Catalog object metadata changes and Data Lake changes in Compass data through
administration stored procedures on page 171.

Data objects are converted on-demand when a query is run. The data objects referenced in the query
are compared to the latest data in the Data Lake. Any objects stored in the Data Lake that have not
been converted, are converted when the query executes, to ensure that the query retrieves all data
available for the query. A query will fail for a data conversion error.

For information on how to handle data conversion failures, see Query error handling on page 175.

Infor ION Development Guide–Cloud Edition | 170

Data Lake queries

The query execution steps involve preparing the query, executing the query and preparing the results.

To prepare the query, the data objects and properties referenced in the query are validated against
the Data Catalog object metadata, the query hints and syntax are validated and converted, the query
is executed and the results are prepared.

For information on how to handle errors in the query execution steps, see Query error handling on
page 175.

Handling Data Catalog object metadata changes and Data
Lake changes in Compass data through administration stored
procedures
The Infor Data Catalog is the source of metadata definitions for Compass data objects, data object
properties, and logic for variation handling. When you make metadata changes, use the administration
stored procedures to clear outdated metadata definitions.

You can update the Data Lake data through the purge and archive processes and the process to mark
objects as corrupt.

Compass is not automatically updated when object metadata is updated or when Data Lake data is
purged, archived, or marked as corrupt.

Use the Compass stored procedures to perform administrative operations on Compass data storage,
object definitions, and object views. You use the stored procedure to clear table, clear data, or reset
data when Data Lake data is purged, archived, or marked as corrupt. Use the clear table or clear view
procedures to update Compass for object metadata changes. You use the reset partitions stored
procedure to resolve partition issues.

The administration stored procedure to clear table removes the Compass object definition and variation
handling views. The clear table can clear table data object definitions with or without removing converted
data. The data and object definitions are recreated the next time a query is processed for the affected
data objects.

Data Catalog object metadata best practices
It is expected that the Data Catalog object definitions change over time. Use the best practice guidelines
to ensure that object definitions are in synch with Compass data storage and query functionality.
• Add new properties to the metadata as required.
• Add a new property to replace an existing property, leave the deprecated property in the metadata

definition.
• Loosen constraints of existing properties, such as extending string lengths or increasing the scale

and precision of decimal values. Do not tighten constraints.
• Do not remove or rename properties.
• Do not change the data type of an existing property. This makes old and new data incompatible.

Instead, add a new property.

Infor ION Development Guide–Cloud Edition | 171

Data Lake queries

• Use the identifier paths, variation path and delete indicator properties for variation handling.

See Variation handling on page 166.

Clear table with or without clearing data
The infor.clear_table stored procedure clears the Compass object definition. The Compass object
definition includes the properties in the data object plus information about the object’s identifier paths,
variation path and deleted indicator. Optionally, the stored procedure clears the Compass data storage.

This procedure is used to clear Compass when the object’s metadata definition, stored in the Data
Catalog, is updated with changes that affect the core definition or when historic data must be cleared
and stored again with the new definition. This procedure does not affect data in the “raw” Data Lake;
it updates data stored for Compass data storage only.

This procedure is used when Data Lake data is purged, archived, or marked as corrupt. This operation
clears all Compass data storage; it does not affect the “raw” Data Lake data.

Use this procedure when these changes occur:

• The data object metadata definition is updated with significant data type changes, such as changing
a data type from a string to a number, or a number to a datetime. If Data Lake data has already
been converted to Compass data storage, clear the table and the data.

• The data object metadata definition is updated with new properties. Use a value of ‘true’ to reload
historic data based on the updated object definition. The data is refreshed when a query is executed
on the data object.

• The data object metadata definition is updated with new properties. Use a value of ‘false’ to not
clear the data if historic data is not affected and does not have to be converted again to Compass
data storage.

• The Data Catalog Locale Selections change. Clear the table definitions when new locales are
added or updated. The next time a query runs, the object is converted using the current Locale
Selections. If historic data contains localized strings for the new or updated locale codes, clear the
Compass data storage. If historic data, stored in Compass data storage does not contain localized
strings for the new or updated locales, clearing the data is not necessary.

• The Data Lake data is purged, archived, or marked as corrupt.

INFOR.CLEAR_TABLE and clear Compass data

The first parameter is the object name. Enclose the object name in single quotes. The second parameter
is true or false. It is a string literal and must be enclosed within single quotes. A value of true clears
data stored for Compass queries. Query syntax is case-insensitive.

Syntax

EXEC INFOR.CLEAR_TABLE('objectname', 'true')

INFOR.CLEAR_TABLE and retain Compass data

The infor.clear_table stored procedure clears the optimized data format storage definition. Use the
second parameter option of ‘false’ to retain the historic data stored in Compass. The first parameter
is the object name. Enclose the object name in single quotes. The second parameter is true or false.
It is a string literal and must be enclosed within single quotes. A value of false retains Compass data.
Query syntax is case-insensitive.

Infor ION Development Guide–Cloud Edition | 172

Data Lake queries

Syntax

EXEC INFOR.CLEAR_TABLE('objectname','false')

Clear view
The infor.clear_view stored procedure clears the Compass view definition for a data object. Use this
procedure when the Data Catalog object definition’s additional properties for IdentifierPaths,
VariationPath or DeleteIndicator properties are added, updated or removed. The values impact the
variation handling query processes.

INFOR.CLEAR_VIEW

The parameter is the object name. Enclose the object name in single quotes. Query syntax is
case-insensitive.

Syntax

EXEC INFOR.CLEAR_VIEW('objectname')

Clear data
The infor.clear_data stored procedure clears the Compass data stored for an object.

Use this process when the Data Catalog object definition changes, that requires clearing Compass
data and reconverting it again based on the new metadata definition.

Use the infor.clear_data stored procedure to clear Compass data after Data Lake data is purged,
archived, or marked as corrupt. The date on the clear data operation should be set back to the earliest
date, in UTC, of the Data Lake operation. For example, if you purged data from 2020-01-01, use the
clear data operation to clear data from 2020-01-01. The next time you run a Compass query, the
Compass data is reprocessed from 2020-01-01 to the current time. Compass data that was added to
the Data Lake before 2020-01-01 is not affected.

The second parameter is the partition of data. Partitions are based on UTC date. The data cleared is
data posted on and after the date. This procedure does not affect data in the “raw” Data Lake; it updates
data stored for Compass data storage only.

INFOR.CLEAR_DATA

The first parameter is the object name. Enclose the object name in single quotes.

The second parameter is the Compass data partition. Partitions correspond to dates. The dates are
based on the date of the last modified timestamp. The lastmodified timestamp is the date time on
which the data object was added to the Data Lake. The clear data procedure clears all Compass data
on and after the specified date. Enclose the date with single quotes. Query syntax is case-insensitive.

Syntax

EXEC INFOR.CLEAR_DATA('objectname', 'YYYY-MM-DD')

Infor ION Development Guide–Cloud Edition | 173

Data Lake queries

Reset partitions
The infor.reset_partitions stored procedure clears the Compass data partitions and recreates them.
Use this process when Compass data is missing or incomplete. This condition may occur if converting
“raw” data objects to Compass data failed.

This procedure does not affect Compass data definitions or data. It only impacts Compass data partitions.

INFOR.RESET_PARTITIONS

The parameter is the object name. Enclose the object name in single quotes. Query syntax is
case-insensitive.

Syntax

EXEC INFOR.RESET_PARTITIONS('objectname')

Compass JDBC driver
The Compass JDBC driver may be used to query Data Lake data through a local SQL query tool.

The same query syntax is supported through the Compass query editor, the Compass APIs, and the
Compass JDBC driver.

The Compass JDBC driver is available through the ION Desk Downloads function. You can access
the Downloads function through ION Desk / Configurations / Downloads. See the Infor ION Desk User
Guide.

The driver is also available for download through the Infor Support Download site.

The JDBC driver uses ION API authentication.

The setup and configuration instructions are documented in Infor Support Portal KB 2103864. We
recommend that you use the current version of the driver because support for older versions is
deprecated over time.

Query result set differences
In the Data Catalog, the metadata object’s properties have data types associated with them. For
example, integer, decimal, Boolean or strings defined with a date or datetime format.

The result values may differ from the metadata-defined type. Query results are based upon the method
that is used to execute a query. For the Compass API, the values are also defined by the output type
of CSV or new-line-delimited JSON.

The Compass query editor shows results in a grid. If you export the results to CSV, the format values
are set.

The Compass API returns results in CSV or JSON, depending on the result set format that is specified
when the query is submitted. The Compass API result values that are returned for JSON and CSV
output show values as strings using double-quotes. The CSV query results return numbers in the

Infor ION Development Guide–Cloud Edition | 174

Data Lake queries

general format of decimal (38,15). The CSV query results return dates and timestamps in UTC using
the ISO8601 RFC3339 format. For CSV, the results do not convert the results to the metadata-defined
data type, scale, and precision or date format. The result format and values may be changed in future
versions of Compass queries. The JSON result format returns numeric values according to their
metadata-defined type, when applicable. Integers and bigints are returned, and decimal values are
based on the metadata-defined precision and scale.

Boolean values are returned as true or false.

Date and datetime values are returned as timestamps in UTC using the ISO8601 RFC3339 format.

The JDBC result format may also be converted based on the SQL query tool’s format or localization
settings. The JDBC result returns timestamps in UTC using the ISO8601 RFC3339 format. The query
tool may convert the value to the local timezone. The query tool may convert the format. Check the
query tool settings for data type controls and localization settings.

Query error handling
Compass queries use messages categories to distinguish which part, or component, failed during the
query execution.

These are the message categories:

• SQL messages, for query errors that occur during the query process execution. The message code
range for SQL messages is 200-399.

• Process messages, for query errors that occur because of invalid data object or property references
and query conversion issues. The message code range for SQL messages is 400-499.

• Data storage messages, for queries that fail during the Compass data storage process. The
message code range for data storage messages is 500-599.

• Internal messages, for queries that fail for general errors. The message code range for data storage
messages is 600-699.

• Compass API messages. The message code range for API messages is 700-799.

Each query is associated with a unique query ID. The query ID is crucial to helping you and Infor
Support investigate an error. A query ends on the first error. The error message includes the query ID,
the timestamp in UTC, and other error details including the error category, error code and message.
When reporting issues to Infor Support, include the full error message details, including the query ID,
error timestamp and messages.

Troubleshooting Compass queries
Use these troubleshooting guidelines to answer common questions and issues.

Initial query is executing for a long time

The first query executed for data object or data objects referenced in a query initiates a Compass data
storage activity. For Compass data storage, all data in the “raw” or original Data Lake that has not been

Infor ION Development Guide–Cloud Edition | 175

Data Lake queries

stored in the Compass data storage is converted. The Compass data storage starts before the query
executes, so the Compass query executes on the most recent data in the Data Lake.

For example, 1000 data objects are sent to the Data Lake, and a query is executed for the data object.
All 1000 objects are stored in the optimized Compass data storage before the query executes. This
occurs regardless of the WHERE condition on a query. This condition only occurs one time; once the
data is stored in the Compass data store, it stays in the store unless it is cleared using an administration
stored procedure.

To minimize the effect of the data storage time, execute queries more frequently. In this way, fewer
data objects must be stored in Compass storage each time a query is executed.

If you are testing query syntax or do not necessarily require the current Data Lake data, use the hint
to “skip reformatting”. The hint skips the process to store Data Lake data into Compass data storage.

See Query hints on page 164.

Updated Data Catalog data object metadata changes are not in Compass

Data Catalog data object metadata changes are not automatically updated for historic data or for
property changes, such as these:

• Adding properties to a metadata definition
• Updating additional properties for identifier paths, variation path, and the deletion indicator

These changes require clearing the Compass table and Compass data.

For guidelines and instructions to update Compass to match metadata definitions, see Handling Data
Catalog object metadata changes and Data Lake changes in Compass data through administration
stored procedures on page 171.

Updated Data Catalog locale selections cause queries to fail with a 401 error

Data Catalog locale selection changes are not automatically updated for historic data or for locale
selection changes, such as adding new locales to locale selections.

These changes require clearing the Compass table and Compass data.

For guidelines and instructions to update Compass to match the locale selections, see Handling Data
Catalog object metadata changes and Data Lake changes in Compass data through administration
stored procedures on page 171.

Query results are incorrect when the query results have duplicate result column names

A query that selects properties or aliases with the same name returns only distinct properties in the
results. As a general guideline, do not select properties or aliases with duplicate names. Ensure that
each property in a result set has a distinct name.

Queries fail after object metadata is updated

A query may fail with various errors, including a 401 error for invalid property names, after Data Catalog
object metadata is updated. Metadata changes are not automatically reflected in Compass. If object
metadata is changed, clear the Compass object definition and clear Compass data if necessary.

Infor ION Development Guide–Cloud Edition | 176

Data Lake queries

See the INFOR.CLEAR_TABLE stored procedure in the section Handling Data Catalog object metadata
changes and Data Lake changes in Compass data through administration stored procedures on page
171.

Infor ION Development Guide–Cloud Edition | 177

Data Lake queries

Appendix A: Valid characters for document names

Custom documents can use any standard letter from any language.

Upon import, the allowed characters are verified using a regular expression that is similar to this sample
expression:

/[\u0041-\u005A\u0061-\u007A\u00AA\u00B5\u00BA\u00C0-\u00D6\u00D8-
\u00F6\u00F8-\u02C1\u02C6-\u02D1\u02E0-\u02E4\u02EC\u02EE\u0370-
\u0374\u0376\u0377\u037A-\u037D\u0386\u0388-\u038A\u038C\u038E-\u03A1\u03A3-
\u03F5\u03F7-\u0481\u048A-\u0527\u0531-\u0556\u0559\u0561-\u0587\u05D0-
\u05EA\u05F0-\u05F2\u0620-\u064A\u066E\u066F\u0671-
\u06D3\u06D5\u06E5\u06E6\u06EE\u06EF\u06FA-\u06FC\u06FF\u0710\u0712-
\u072F\u074D-\u07A5\u07B1\u07CA-\u07EA\u07F4\u07F5\u07FA\u0800-
\u0815\u081A\u0824\u0828\u0840-\u0858\u08A0\u08A2-\u08AC\u0904-
\u0939\u093D\u0950\u0958-\u0961\u0971-\u0977\u0979-\u097F\u0985-
\u098C\u098F\u0990\u0993-\u09A8\u09AA-\u09B0\u09B2\u09B6-
\u09B9\u09BD\u09CE\u09DC\u09DD\u09DF-\u09E1\u09F0\u09F1\u0A05-
\u0A0A\u0A0F\u0A10\u0A13-\u0A28\u0A2A-
\u0A30\u0A32\u0A33\u0A35\u0A36\u0A38\u0A39\u0A59-\u0A5C\u0A5E\u0A72-
\u0A74\u0A85-\u0A8D\u0A8F-\u0A91\u0A93-\u0AA8\u0AAA-\u0AB0\u0AB2\u0AB3\u0AB5-
\u0AB9\u0ABD\u0AD0\u0AE0\u0AE1\u0B05-\u0B0C\u0B0F\u0B10\u0B13-\u0B28\u0B2A-
\u0B30\u0B32\u0B33\u0B35-\u0B39\u0B3D\u0B5C\u0B5D\u0B5F-
\u0B61\u0B71\u0B83\u0B85-\u0B8A\u0B8E-\u0B90\u0B92-
\u0B95\u0B99\u0B9A\u0B9C\u0B9E\u0B9F\u0BA3\u0BA4\u0BA8-\u0BAA\u0BAE-
\u0BB9\u0BD0\u0C05-\u0C0C\u0C0E-\u0C10\u0C12-\u0C28\u0C2A-\u0C33\u0C35-
\u0C39\u0C3D\u0C58\u0C59\u0C60\u0C61\u0C85-\u0C8C\u0C8E-\u0C90\u0C92-
\u0CA8\u0CAA-\u0CB3\u0CB5-\u0CB9\u0CBD\u0CDE\u0CE0\u0CE1\u0CF1\u0CF2\u0D05-
\u0D0C\u0D0E-\u0D10\u0D12-\u0D3A\u0D3D\u0D4E\u0D60\u0D61\u0D7A-\u0D7F\u0D85-
\u0D96\u0D9A-\u0DB1\u0DB3-\u0DBB\u0DBD\u0DC0-\u0DC6\u0E01-
\u0E30\u0E32\u0E33\u0E40-
\u0E46\u0E81\u0E82\u0E84\u0E87\u0E88\u0E8A\u0E8D\u0E94-\u0E97\u0E99-
\u0E9F\u0EA1-\u0EA3\u0EA5\u0EA7\u0EAA\u0EAB\u0EAD-
\u0EB0\u0EB2\u0EB3\u0EBD\u0EC0-\u0EC4\u0EC6\u0EDC-\u0EDF\u0F00\u0F40-
\u0F47\u0F49-\u0F6C\u0F88-\u0F8C\u1000-\u102A\u103F\u1050-\u1055\u105A-
\u105D\u1061\u1065\u1066\u106E-\u1070\u1075-\u1081\u108E\u10A0-
\u10C5\u10C7\u10CD\u10D0-\u10FA\u10FC-\u1248\u124A-\u124D\u1250-
\u1256\u1258\u125A-\u125D\u1260-\u1288\u128A-\u128D\u1290-\u12B0\u12B2-
\u12B5\u12B8-\u12BE\u12C0\u12C2-\u12C5\u12C8-\u12D6\u12D8-\u1310\u1312-
\u1315\u1318-\u135A\u1380-\u138F\u13A0-\u13F4\u1401-\u166C\u166F-

Infor ION Development Guide–Cloud Edition | 178

Valid characters for document names

\u167F\u1681-\u169A\u16A0-\u16EA\u1700-\u170C\u170E-\u1711\u1720-
\u1731\u1740-\u1751\u1760-\u176C\u176E-\u1770\u1780-\u17B3\u17D7\u17DC\u1820-
\u1877\u1880-\u18A8\u18AA\u18B0-\u18F5\u1900-\u191C\u1950-\u196D\u1970-
\u1974\u1980-\u19AB\u19C1-\u19C7\u1A00-\u1A16\u1A20-\u1A54\u1AA7\u1B05-
\u1B33\u1B45-\u1B4B\u1B83-\u1BA0\u1BAE\u1BAF\u1BBA-\u1BE5\u1C00-\u1C23\u1C4D-
\u1C4F\u1C5A-\u1C7D\u1CE9-\u1CEC\u1CEE-\u1CF1\u1CF5\u1CF6\u1D00-\u1DBF\u1E00-
\u1F15\u1F18-\u1F1D\u1F20-\u1F45\u1F48-\u1F4D\u1F50-
\u1F57\u1F59\u1F5B\u1F5D\u1F5F-\u1F7D\u1F80-\u1FB4\u1FB6-\u1FBC\u1FBE\u1FC2-
\u1FC4\u1FC6-\u1FCC\u1FD0-\u1FD3\u1FD6-\u1FDB\u1FE0-\u1FEC\u1FF2-
\u1FF4\u1FF6-\u1FFC\u2071\u207F\u2090-\u209C\u2102\u2107\u210A-
\u2113\u2115\u2119-\u211D\u2124\u2126\u2128\u212A-\u212D\u212F-\u2139\u213C-
\u213F\u2145-\u2149\u214E\u2183\u2184\u2C00-\u2C2E\u2C30-\u2C5E\u2C60-
\u2CE4\u2CEB-\u2CEE\u2CF2\u2CF3\u2D00-\u2D25\u2D27\u2D2D\u2D30-
\u2D67\u2D6F\u2D80-\u2D96\u2DA0-\u2DA6\u2DA8-\u2DAE\u2DB0-\u2DB6\u2DB8-
\u2DBE\u2DC0-\u2DC6\u2DC8-\u2DCE\u2DD0-\u2DD6\u2DD8-
\u2DDE\u2E2F\u3005\u3006\u3031-\u3035\u303B\u303C\u3041-\u3096\u309D-
\u309F\u30A1-\u30FA\u30FC-\u30FF\u3105-\u312D\u3131-\u318E\u31A0-
\u31BA\u31F0-\u31FF\u3400-\u4DB5\u4E00-\u9FCC\uA000-\uA48C\uA4D0-
\uA4FD\uA500-\uA60C\uA610-\uA61F\uA62A\uA62B\uA640-\uA66E\uA67F-\uA697\uA6A0-
\uA6E5\uA717-\uA71F\uA722-\uA788\uA78B-\uA78E\uA790-\uA793\uA7A0-
\uA7AA\uA7F8-\uA801\uA803-\uA805\uA807-\uA80A\uA80C-\uA822\uA840-
\uA873\uA882-\uA8B3\uA8F2-\uA8F7\uA8FB\uA90A-\uA925\uA930-\uA946\uA960-
\uA97C\uA984-\uA9B2\uA9CF\uAA00-\uAA28\uAA40-\uAA42\uAA44-\uAA4B\uAA60-
\uAA76\uAA7A\uAA80-\uAAAF\uAAB1\uAAB5\uAAB6\uAAB9-\uAABD\uAAC0\uAAC2\uAADB-
\uAADD\uAAE0-\uAAEA\uAAF2-\uAAF4\uAB01-\uAB06\uAB09-\uAB0E\uAB11-
\uAB16\uAB20-\uAB26\uAB28-\uAB2E\uABC0-\uABE2\uAC00-\uD7A3\uD7B0-
\uD7C6\uD7CB-\uD7FB\uF900-\uFA6D\uFA70-\uFAD9\uFB00-\uFB06\uFB13-
\uFB17\uFB1D\uFB1F-\uFB28\uFB2A-\uFB36\uFB38-
\uFB3C\uFB3E\uFB40\uFB41\uFB43\uFB44\uFB46-\uFBB1\uFBD3-\uFD3D\uFD50-
\uFD8F\uFD92-\uFDC7\uFDF0-\uFDFB\uFE70-\uFE74\uFE76-\uFEFC\uFF21-
\uFF3A\uFF41-\uFF5A\uFF66-\uFFBE\uFFC2-\uFFC7\uFFCA-\uFFCF\uFFD2-
\uFFD7\uFFDA-\uFFDC]+

Infor ION Development Guide–Cloud Edition | 179

Valid characters for document names

	Contents
	About this guide
	Contacting Infor

	Introduction
	Adopting ION

	BODs and messages
	BOD
	Noun
	Verb
	General concepts
	Documentation Identification
	Message headers
	Mandatory fields
	Optional fields
	Deprecated field

	Verbs and Verb Patterns
	Verbs
	Action codes
	Sync verb
	Publishing a Sync BOD
	Process and Acknowledge verbs
	Get and Show verbs
	Load and Update verbs
	Confirm BOD
	Example of Use verbs
	Fragmented data
	Network connection

	Message contents
	Noun references
	Documents encoding
	Date and time

	Connecting to ION
	Infor Application Connector
	Using third-party connectors
	Alternative connector
	Justification of file connector

	Infor Application Connector (IMS)
	IMS v3 introduction
	Guidelines for application teams that switch from v2 to v3

	IMS interaction
	Application sends a message to ION
	ION sends a message to an application

	Using the Infor Application Connector
	Application connection points
	Inbox and outbox tables
	COR_OUTBOX_ENTRY
	COR_OUTBOX_HEADERS
	COR_INBOX_ENTRY
	COR_INBOX_HEADERS
	ESB_INBOUND_DUPLICATE

	Removing messages from the inbox and outbox tables
	Polling Message Preference
	Single I/O Box for Multi-tenant
	Single I/O Box for Multi-Logical Ids

	ION Connecting Considerations
	Handling transactions
	Message sequence
	Duplicated messages
	Sending documents in batch
	Publish historical data
	Message reprocessing
	Performance

	Adopting Event Management, Workflow, or Pulse
	Alerts, notifications and tasks
	When to use Pulse, Event Management and Workflow

	Starting a workflow from an application
	Starting a workflow through ProcessWorkflow
	Canceling a workflow through ProcessWorkflow
	Workflow BOD details
	Sample workflow BODs
	Sample ProcessWorkflow to start a workflow
	Sample AcknowledgeWorkflow when the request was accepted

	Creating alerts, tasks, or notifications from an application
	Creating alerts, tasks, or notifications
	Creating tasks from an application
	Important notes
	Creating an alert
	Creating a task
	Creating a notification

	Receiving status updates on alerts, tasks, or notifications
	Receiving status updates

	Canceling alerts, tasks, or notifications
	Receiving status updates
	Canceling an alert
	Canceling a task
	Canceling a notification

	Pulse BOD details
	PulseAlert
	PulseTask
	PulseNotification

	Supported features

	Creating custom metadata
	Data Catalog contents
	Before customizing the Data Catalog
	Object Naming Conventions
	Custom objects of type ANY
	Defining a custom object of type ANY

	Custom objects of type JSON
	Defining a custom object of type JSON
	Newline-delimited JSON

	Custom objects of type DSV
	Defining a custom object of type DSV
	Dialect properties for DSV objects

	Metadata for localized strings
	Method 1
	JSON schema example (Method 1)

	Method 2
	DSV schema example (Method 2)

	Using datetime formats
	Custom datetime formats

	Schema Property Order
	Defining additional object metadata properties
	Additional properties file

	Defining a custom noun
	Customizing an existing noun
	Using properties in the UserArea
	Using a custom XML structure in the UserArea
	Using an XSD extension for validation

	Custom message headers
	Custom headers file format

	Application Programming Interface (API)
	ION OneView API
	Available API Methods

	ION Process API
	Data Catalog API
	Available REST APIs

	Business Rules API
	Data Lake API
	Retrieving data objects
	Querying data objects
	Purging data objects
	Archiving data objects
	Restoring data objects

	Data Lake queries
	Data Lake data object definitions
	JSON data objects
	DSV data objects
	Data object definitions for localized string values
	Data object localized data definition, method 1
	Data object localized data definition, method 2

	Data Lake JDBC driver for Birst
	Data Selection Features
	Data Selection for Localized String Values
	SQL Query Expressions
	Troubleshooting SQL expressions

	Data Lake Compass queries
	Query functionality and syntax
	Query structure
	String functions
	Mathematical operators
	Numeric functions
	Aggregation functions
	Datetime functions
	Logical and comparison operators
	Conversion functions
	Analytic functions

	Spark query functionality
	Query syntax
	Datetime functions
	Comparison functions
	String functions
	Comparison functions

	Infor functionality
	Queries for localized data

	Queries for incremental data loads
	Query number, date and timestamp general and unparseable values
	Infor functions
	Query hints

	Variation handling
	Select the maximum variation of each record and excluded deleted records
	Select all variations
	Select all variations and include deleted records

	Data Lake database schemas
	Query processing
	Handling Data Catalog object metadata changes and Data Lake changes in Compass data through administration stored procedures
	Data Catalog object metadata best practices
	Clear table with or without clearing data
	Clear view
	Clear data
	Reset partitions

	Compass JDBC driver
	Query result set differences
	Query error handling
	Troubleshooting Compass queries

	Valid characters for document names

