m Infor ION Development Guide

Release 12.0.x

Copyright © 2019 Infor

Important Notices

The material contained in this publication (including any supplementary information) constitutes and
contains confidential and proprietary information of Infor.

By gaining access to the attached, you acknowledge and agree that the material (including any
modification, translation or adaptation of the material) and all copyright, trade secrets and all other
right, title and interest therein, are the sole property of Infor and that you shall not gain right, title or
interest in the material (including any modification, translation or adaptation of the material) by virtue
of your review thereof other than the non-exclusive right to use the material solely in connection with
and the furtherance of your license and use of software made available to your company from Infor
pursuant to a separate agreement, the terms of which separate agreement shall govern your use of
this material and all supplemental related materials ("Purpose”).

In addition, by accessing the enclosed material, you acknowledge and agree that you are required to
maintain such material in strict confidence and that your use of such material is limited to the Purpose
described above. Although Infor has taken due care to ensure that the material included in this publication
is accurate and complete, Infor cannot warrant that the information contained in this publication is
complete, does not contain typographical or other errors, or will meet your specific requirements. As
such, Infor does not assume and hereby disclaims all liability, consequential or otherwise, for any loss
or damage to any person or entity which is caused by or relates to errors or omissions in this publication
(including any supplementary information), whether such errors or omissions result from negligence,
accident or any other cause.

Without limitation, U.S. export control laws and other applicable export and import laws govern your
use of this material and you will neither export or re-export, directly or indirectly, this material nor any
related materials or supplemental information in violation of such laws, or use such materials for any
purpose prohibited by such laws.

Trademark Acknowledgements

The word and design marks set forth herein are trademarks and/or registered trademarks of Infor and/or
related affiliates and subsidiaries. All rights reserved. All other company, product, trade or service
names referenced may be registered trademarks or trademarks of their respective owners.

Publication Information

Release: Infor ION 12.0.x
Publication Date: November 20, 2019
Document code: ion_12.0.x_ionopdg_en-us

Contents

Contents
ADOUL TNIS QUITE .ttt et e e e e e e et e e e e e b bbb bbb et e e et e e e e e aeaeaeaaeeaaasans 7
Lo] o] r=Tox 1] 0 o TN 1Y () PP UURPPPURPP P 7
(g F=T o) (=T I [e L (o To [T o1 {0 o RPN 8
Yo (o] o] i1 o N 1@ 1N PP PPPPPSRP 9
Chapter 2: BODS @Nd MESSAQES . ..ccuuuuertiiiiiiiieiittetttteeaaaeaaaeasasaasaaaassssssrseeeerereerrteraaaeeaaeeeseeensannnanns 11
10 5 TP SUSUPPPPPPPIN 11
[N [0 0 o F TP UPPPPRRRR 12
RV L= o T PP PRRPR 12
LCT=T =T = | B oo Lo =Y o] £ RSSO 13
Documentation IdentifiCAtION.c.ueiiiiiiiee e 14
Y LoTEST= Lo = g T= = o =T USSP 15
Y= Vo F= 10 YA =1 o RSP 15
10 01T = 1= 0 £ PP 16
=T o] =T o= 1 =0 1= (o PR 17
Chapter 3: Verbs and Verh PatternS...... ...t 18
RV L= 1 PSSP 18
F i [0] g oo To [TSP PPPPPPPI 19
)Y Ao Y =T o PP TP TP TRRPPP 20
PUbBIIShING @ SYNC BOD....... .ttt e e et e e e e e et b e e e e e e s snnbeeeeeeeeaneneeeeas 20
Process and ACKNOWIEAQE VEIDS.........ooii it seaeeee s 21
Get @Nd SNOW VEIDS. ...ttt e e ettt e e e e s e nb e e e e e s entbeeeeaeseannees 21
Load and UPate VEIDS.........ueiiiiieiiieeit ettt et e e e e e ettt e e e e e s annbe e e e e e e s annnneeeas 22
(0111110001 =10] 5 J PP 23
EXQMPIE Of USE VEIDS. ...ttt ettt e e e et b e e e e e e sabbe e e e e e e e annbeeeeas 23
[= (o 00T Y (=To I - - PRSPPI 24
N3 o Qoo T =T i o o FO TP RPPT P 25

Infor ION Development Guide | 3

Contents

Chapter 4: MeSSAgE CONTENTS.....iiiiiiiiiiiie et et b e e e e aeaaees 26
N (o TN = (=T =T ol F TP PPPR T 26

[To Yot U1 1T 0] £=3=T o To [TV RSSO 26
D= L= T [0 [(10 1T TP PPP TP 27
Chapter 5: CoNNECHING T0 TON. .. uuuiiiiiiiiiii ettt e e e e e e e e e e e e e e e e s b aeeeees 28
Tal{oTgr2Y o] o] [Tox=11To] g I @] o] 1= Tox (] PR 28
UsiNg third-party CONNECIOIS.uiiiiiiiiiiiie e e e e e et e e e e e e e e e e e s s e s e s s s nsennearrennnees 29
ALEINALIVE CONNMEBCIOIS. ... itieiiiiittit e ettt e e sttt e e e s rbb bt e e e e s anbb et e e e s aannrneeeeeeas 29
Advantages and disadvantages of each CONNECION.............cooiiiiiiiiiiiieec e 29
Chapter 6: Infor Application CoNNECIOr (IMS).......ciiiiiiii i 32
1Y ST) =T = ot 1o) o PRSP OPSSRR 33
Application sends a MESSAGE 10 ION........oiiii i e e e e e e s saraeeeae e 33
ION sends a message to an apPliCALION.c.iii i 34

AP SPECITICALIONS. ...t e ettt e e e e s sttt e e e e e s snbr e e e e e e e enneaeeeaeaas 35
Chapter 7: Using the Infor Application CONNECION.....ccciciiiiiiiiiiiiieiiieee e 36
Application CONNECLION POINTS.........ccoiiiii i e e e e e e e e e e s e e s s s e s rr s e rarrreraeaaaaaaens 36
INDOX aNd OUIDOX tADIES.eeeii e e e e e 36
COR_OUTBOX_ENTRY ...ttt ettt ettt ettt n e s et en e e enens 37
COR_OUTBOX_HEADERS.cv et eeeet oottt ettt e ettt et et e ee et e e e e es et e et et eeee e e eeeesenereaeaes 38
COR_INBOX_ENTRY ..ttt eteeeeeee et ee et et e et e et et et eeet et eses e e et eeeae e et eeeeeee et eses et et esees et eaeeeeneserens 38
COR_INBOX_HEADERS. ...ttt ettt ettt ettt e et e e e nae e e e snne e e e anneeas 39
ESB_INBOUND_DUPLICATE.......oo ittt ettt ettt et e e et e e e nneeeeeenee 40
Removing messages from the inbox and outboX tables.............uuvveiiiiiiiiiieeee e 40
POIIING MESSAJE PrefEIBNCE. .. .eeeeiieiiiieei ettt e et e e e e e e e e e e e s s e e s s s s nneeereeneees 40
Single 1/O BOX fOr MUI-TENANT.oeiiiiiiiieieeeee e e e e e e e e e e e e s e e e e e s eereeeees 41
Single 1/0 BoX for MUIti-LOGICAI 1US.........cuiieiieiiiiii it eeees 41
Chapter 8: ION Connecting CONSIAEIatiONS......cviiiiiiieeeeeee e e e e e e e e e e e e e e 43
[F= gl |1 To I = T oY= Ted 1o o 1T R RPPR 43
MESSAGE SEOUEINCE. ... cceieiieiiieitttee et e e e e e e ettt ettt bt e et e e e e e e et eeeeaee b b e s s e e e e e e e et eeeees e bbb e e e eeeeeeeeeeeennnnne 43
DN o] [Tor=1 (o [4TSI Vo [P RPPT 44
Sending doCUMENtS iN DALCK........coiiiiiiiie et e e e 44
0] o]] N 1S3 (o [ox= LI - - T TP RPPT 46
MESSAGE TEPIOCESSING. ... eeeeeiutereeatieeeateeaeaateeeeaauteeaaaateeeeasaeeeasteaeaasteeeaasseeasanseeesasseeesanseeeeanseeeeanes 46
=T (0] o1 F= 1 (o TP UUUUPPTRRTOUPUPRT 46

Infor ION Development Guide | 4

Contents

Chapter 9: Adopting Event Management, Workflow, or PUISE..........cccceeiiiiiiiiiiiiiiciceee e 48
Alerts, NOLIfICAIONS AN TASKS.uiiiie e e e e et e e ea et e e e e et et s essaesesaaasseaneerenaeees 48
When to use Pulse, Event Management and WOrkflow.............ccccccooe i 49

Chapter 10: Starting a workflow from an appliCation...........c..uuuuiiiiiiiiiiiiiiiee e 50
Starting a workflow through ProcessWorkflow............coooiiii e 50
Canceling a workflow through ProcessWOrkflow..........ccocciiiiiiiiiic e 52
WOTKFIOW BOD TELAIIS.eeieiieeeiiiee ettt e e e e e e s st e e e e s s ennrneeeee e 53
SaAMPIE WOTKFIOW BODS... ...ttt e e e e e e e e e e e et e e e aeaaeeaeeaseaaesaaanannnnneeerennnees 56

Sample ProcessWorkflow to start @ WOrkflow..........ccoooiiiiiiiiii e 56
Sample AcknowledgeWorkflow when the request was accepted.........cccceeeeeeeiiiiiiiiicicciiiiiiiinenee, 57

Chapter 11: Creating alerts, tasks, or notifications from an application.............ccccccccceeeeiiiinns 59

Creating alerts, tasks, or NOLIfICALIONS.............ccoiiiiiii e 59
Creating tasks from an appliCatiON..........c.ooiiiiiiiiii e 60
IMPOITANT NMOTES. ..ottt e ettt e e e e e ettt et e e e bbb e e e e e e e e e e et e e e e bbb e e e e e eeaeeas 61
(01 =\ 1] o =T = [T o ST PRT 61
(O (=i o = T =] O UPPPT 62
(=T (1] oo =T 0o 11 o= 11 To] o AR OTP 63

Receiving status updates on alerts, tasks, or NOtIficationS...........ccevvvviiiiiiiiee e, 63
RECEIVING STAtUS UPAALES.......cce e e e e e e e e e e e e e e e e e s e s e et r e e e e e eeeaaaaaaens 65
Receiving information about deleted aCtiVItIES..........uuuiiiiiiiiiiie e 65

Canceling alerts, tasks, Or NOLIfICALIONS...........cccooiiiii i 66
RECEIVING STAtUS UPAALES......ccieieeeie et e e e e e e e e e e s e e e e s s e et e e e e e e e eeeaaaaaaeens 67
(0T g Tot= 1oV = = 1= o PP 68
(0T Tot= 1T = T = 1] P 68
(=T g Tot= 1Yo Jr= T 0T (1 o= L1 To] o TSP 69

PUISE BOD QELAIIS.eeiiieeiiiitiiie ettt e e e st e e e e e bbbt e e s e s sabbe e e e e e e e anbbeeeeas 69
PUISBAIBTT. ..ot e ekttt e e e s et e e e e s sk bbb e e e e e e s anbr e e e e e e s annrrreeae e 69
PUISETASK. ...ttt ettt ettt e e et e e e s ot e e e e e e a b et e e e s et e e e e e s anr e e e s 75
PUISENOTITICATION.eeiiiiiiiee ettt e e e e e s e e e e s s b e eee e 82

YU o] ool g =To I (== 1N] (= PP PRSPPI 89

Chapter 12: Creating CUSTOM MELAUALA.uuiiiiiiiiiiiiieeeeee e e e e e e e e e e e e e e e e e e 91
Data Catalog CONTENTS.oiieiiiiie ettt et e ettt e e e e e s sttt e e e e e s st baeeeae e s s sbbeeeaeeesannbeeeeeeesanseeeeeas 91
Before customizing the Data Catalog..........ocuueeiiieaiiiiiiiiie et e e eeeeeeeas 92
Object NamiNg CONVENTIONS.utiiiiiiitiiieea ettt e e ettt e e e e e s et e e e e e e s sanbaeeeaesaaanbbeeeaeesaansbeeeaaesaannees 92

Infor ION Development Guide | 5

Contents

CUStOM ODJECES OF TYPE ANY ...ttt et e e e s et e e e e e s s e ntbe e e e e e s entbeeeaaesaannees 93
Defining a custom object Of tYPEe ANY ... i e 93
Custom 0ODJECES Of tYPE JSONueiiiiiiiiiiiii et e e e st e e e e s et b e eeaesennees 93
Defining a custom object Of tyPe JSON........oii i 94
NewWline-deliMItEd JSON..... .o e et e e e e e e bbbt e e e e e e s aabbeeeea e e e annneeeeas 94
CUStOM ODJECES Of TYPE DSV ...ttt e e e e e e e e e e e e e e e e e s s e s e e rreeaeees 95
Defining a custom 0bjJect Of tYPEe DSV.......uuiiiiiiiiiiiieeieeeee e 95
Dialect properties for DSV ODJECIS.......ccccce e e 97

L0 LS o e F= 1= T g LT (0] .4 F= LSO 98
CuStom datetime fOIMALS..........eiiiii ittt et e e e e s bb e e e e e e e aeees 99

Yol a=T o g F= W o] 0 =T Y o [SRR 100
Defining additional object metadata Properties........cccuuviviiiiiieiiiieeeeee e 101
Additional Properties file......ccoc e e e e e e 101

[1= T 1T o = o 13 (o o T T T o TSSO 104
CUStOMIZING &N EXISTING NMOUN.......uuiiiiiiiiiiee e e e e e e e e e e e e e s s s e es s s s eeereeeereaaeaaaaeeeesseesssannannnnnns 107
UsSiNg Properties iN the USEIATEA.ottt e e e e e e e e e s e e e e eeeeeaaeeaaaeeeeeas 107
Using a custom XML Structure in the USEIATC@........cuuiviiiiiee et a e e 109
Using an XSD extension for Validation.................uiiiie e 110
Chapter 13: CuStOmM MeESSAJE NBAUEIS......cviiiiiiiiee e e e e e e e e e 112
Custom headers file fOrMAL...........oooiiiiiii et e e e e e 112
Chapter 14: Application Programming Interface (API).....ccccooiiiiiiiiiiiiiiieeceeeee e 118
[ON ProCeSS APL.....ooiiiiiiii i 118
Data Catalog AP ettt 119
Generating SeCUrity CredentialS..........uueeiiiiiiiiie e e e e e e e e e e 119
AVAIIADIE REST APIS. . ittt e e e s e e e e s et b e e e e e e s s bbb e e e e e s snnbbeeeeas 120
BUSINESS RUIES APttt e e e s bbbt e e e e e e ribb b e e e e e e s saneees 123
Appendix A: Valid characters for dOCUMENT NAMES..........oiviiiiiiiiiiiiie e 124

Infor ION Development Guide | 6

About this guide

About this guide

This guide explains how to adopt ION for new applications that you want to connect to ION.

The guide also explains the contents of the ION Registry, and how you can add metadata for your own
documents or for extensions on standard documents.

Intended audience
The document is intended for this audience:

e System Administrators

» Business Process Administrators
* Business Analysts

e Database Administrators

» Application Administrators

Related documents

You can find the documents in the product documentation section of the Infor Support portal, as
described in "Contacting Infor".

e Infor ION Desk User Guide

» Infor Operating Service Administration Guide

» Infor Federation Services Standalone Installation Guide - Version 12.0.x
e Infor ION API Administration Guide

Contacting Infor

If you have questions about Infor products, go to Infor Concierge at htips://concierge.infor.com/ and
create a support incident.

If we update this document after the product release, we will post the new version on the Infor Support
Portal. To access documentation, select Search > Browse Documentation. We recommend that you
check this portal periodically for updated documentation.

If you have comments about Infor documentation, contact documentation@infor.com.

Infor ION Development Guide | 7

https://concierge.infor.com/
mailto:documentation@infor.com

Introduction

Chapter 1: Introduction

ION is a new generation of business middleware that is lighter weight, less technically demanding to
implement, and built on open standards.

In addition to connectivity with ION, you get workflow and business event monitoring in a single,
consistent architecture. ION uses an event-driven architecture. It can pro-actively push data, work
activities, and exception notifications to users. The ION Suite includes several powerful services to
install and configure.

This diagram shows the ION Suite services:

ION DESK Intuitive browser-based interface used to model and manage all |ON services

]] Event]
ION Connect Workflow Management Pulse
Com;"“mcat'on Automated task Business task tD'Et”bIUt't[m Ofd
: an :jct're routing and completion 5 St: ‘:{_S' n
sharing ot ca adaclmsj approvals through monitoring and : ”EI' ce '0_:_5'_
on—premlls.e atrj clou WOFICFIOWS. pFOaC'ENe alertmg na dE priori .IZIﬂg
applications. of exceptions and managing
your work.
ION Service Connedting Infor and non-Infor applications across multiple platforms.

Event management and workflow engines.

Infor ION Development Guide | 8

Introduction

ION Connect

With ION Connect you can establish connections between applications, which can either be Infor
applications or third party applications. A set of connectors is available to connect many types of
resources such as Infor applications, databases, message queues, or files. This varies from cloud or
on premises. In ION Desk you can model document flows between applications. Such flows can
represent a business process. But also more technical flows can be defined. For example, to map data
from a third party application to a standard business object document as used by an Infor application.
You can also use filtering or content-based routing.

Workflow

In Workflow you can model business processes. A workflow can include tasks to be executed by a
user, notifications to be sent to a user, decisions, parallel flows and loop backs. The modeling is done
graphically. Workflows can be used to automate approval processes, and for other types of business
processes. For example, a review flow consisting of several parallel tasks that are sent to multiple
users to review the same document.

Event Management

Using Event Management you can monitor business events that are based on business rules. Users
receive an alert when an exception occurs. For example, if a stock quantity is low, if a shipment is late,
or if a contract must be renewed.

Pulse

With Pulse you can follow what happens in your organization. Either by following specific business
documents or by following alerts, tasks or notifications.

Adopting ION
Adoption of ION is relevant in these situations:

* You want to integrate with other applications.
* You want to extend your application with Event Management, Workflow, or Pulse functionality.

To adopt ION these steps are required:

1 Preparation

Getting the requirements clear is a major factor for success. What is the business case? In particular
to identify business case of integration, system(s) to integrate with, data to exchange between
systems, and mapping from BODs to data in involved applications.

Event Management or Workflow capabilities, or both, can play an important role in adoption
consideration.

An introduction to ION as a product, see the Infor ION Desk User Guide.
Additionally, it is important to understand some basic terms that are relevant for ION.

Infor ION Development Guide | 9

Introduction

See BODs and messages on page 11.

Connect to ION.
Enable the application to connect to ION.
See "Connecting to ION".

If required, adopt Event Management, Workflow, or Pulse.
See Adopting Event Management, Workflow, or Pulse on page 48.

Infor ION Development Guide | 10

BODs and messages

Chapter 2: BODs and messages

This section explains the terminology to adopt ION for an application.

BOD

A Business Object Document (BOD) is an XML document being a generic representation of a business
object. A common language used for information integration. Infor have defined a set of standard BODs.
At a high level, all BODs have some common characteristics. This standardization makes it easier to
understand and use various BODs.

A BOD contains two parts: a noun and a verb.

BOD XML

ApplicationArea

DatafArea

Verb

MNoun

Compounds

Figlds

Infor ION Development Guide | 11

BODs and messages

Noun

A noun is a definition of a set of business data contained in a BOD. The noun represents the properties
of one business object. Examples of nouns are SalesOrder, Item, and BusinessPartner. In ION Desk,
a noun is called a document.

A BOD is data instance of one noun definition. A BOD message can contain multiple instances of the
same noun definition.

Verb

The verb describes the action that is requested for the noun or indicates a response to an action.
A verb can:

* Announce that a business object is created, updated or deleted.
* Indicate a request to create, update or delete a business object.
» Provide a response to a request.

* Report an exception.

This table shows the request verbs supported by Infor:

Request verb Description

Sync A synchronization message containing changes that took place to a business
object. A Sync message is sent by the owner of the data and can be delivered to
any other application for which this information is relevant.

Process A request to create a business object or to apply changes to an existing business
object. A Process message is sent from any application to the application that
owns the data. The owner will send an Acknowledge message in response to the
Process request. The loaded document can be refused.

Get A request to get the details for a business object. A Get message is sent to the
owner of the data. The owner will send a Show message in response to the Get
request.

Load The Load verb is used when a document is created by an application that will not

be the owner. A Load message is sent to the owner of the data. The loaded doc-
ument cannot be refused.

Post The Post verb is similar to the Process verb, but it does not trigger the creation
of an Acknowledge message.

Update The Update verb is used when data is changed by an application that does not
own the data. The Update verb is similar to the Load verb, in the sense that it
must be accepted by the owner. Namely, the Update message informs the owner
of the data that an event took place and what data was changed by the event.

This table shows the response verbs supported by Infor:

Infor ION Development Guide | 12

BODs and messages

Responseverb Description

Acknowledge An Acknowledge response is sent in reply to a Process request. An Acknowledge
response indicates whether the object to be processed was accepted, modified,

or rejected.
Show A Show response is sent in reply to a Get request.
Confirm A Confirm verb is used when a failure happens. A Confirm verb is processed

within ION and is not routed to any other application. The Confirm verb is used
only for the BOD noun. The ConfirmBOD contains a copy of the original message,
to enable an ION administrator to resubmit the same message after fixing the
cause of the problem.

If you implement custom nouns, we recommend that you use these verb patterns as applicable:

* Sync
» Process and Acknowledge
* Getand Show

General concepts

The general concepts are explained here.

Tenant

Atenantis a hosting or software as a service (SaaS) concept where all the data of one tenant is always
separated from all the data of other tenants. There is no cross sharing or viewing of data with other
tenants. This concept requires all participants in the messaging to share the same identity for the same
tenant. Therefore, a Tenant Id such as "infor" must have exactly the same meaning on every system
in the messaging space. Tenants can also be used to separate data for a single on-premises customer,
for example, separating data for a test environment from data from the production environment. Tenant
Id is alphanumeric, maximum length is 22 characters.

Message Id

The Message Id is the unique identifier required for each message. The Message Id is used to detect
duplication and to refer to the message in other messages, especially response documents and
ConfirmBOD messages, and for logging. Message Id is alphanumeric, maximum length is 250
characters.

Logical Id
Logical Id provides a name for the instance of an application connected to ION. As the sender and or
receiver of all messages, the application instance is identified by its Logical Id.

Applications must ensure that the Logical Id used in the message matches the Logical Id defined in
ION.

Logical Ids are also used to drill back to an application in an Infor Ming.le environment.

The Logical Id has format: infor.[application or connection type].[Instance name in ION]. The *application
or connection type’ can refer to Infor applications such as ‘syteline’, ‘eam’ or ’In’, or refer to technology

Infor ION Development Guide | 13

BODs and messages

connectors, such as ‘file’, ‘ws’ or ‘listener’. The 'instance name' is derived from the connection point
name or message listener name. Logical Ids are alphanumeric, maximum length is 250 characters.

The only characters permitted in a Logical Id are the lowercase letters a-z, the dot(.), the digits 0-9,
an underscore (_) and a dash (-).

Documentation Identification

Here is explained how to identify documentation.

Document ID

The ID of the document, is also available in the BOD, for example:
SyncSalesOrder/DataArea/SalesOrder/Header/DocumentID/ID. As the unique identifier of an object
Document ID is made up of several elements: the tenant, accounting entity, location, ID, and RevisionID.

Document ID is the simple ID for this object in its context, for example respective accounting entity,
tenant etc. When in most cases, it is included in the BOD, Document Id (possibly along with Revision
Id) is referenced in identifying the document in order to track the document in ION OneView, trigger
event monitors, activation policies etc.

Document ID is alphanumeric, maximum length is 100 characters.

Revision ID

Revision ID sets the value that is used to keep multiple versions of the same document unique. An
example of Revision ID: SyncSalesOrder/DataArea/SalesOrder/Header/DocumentID/Revisionl|D.
Revision ID is alphanumeric, maximum length is 22 characters.

Variation ID

The variation ID of the document, when a Sync BOD is sent out from a system, a variationID is required.
This variationID can be used at the receiving end to discover messages that are received out of
sequence. For example: SyncSalesOrder/DataArea/SalesOrder/Head- er/DocumentID/ID/@variationID.
Variation ID is numeric, the maximum value is 9223372036854775807.

Accounting Entity

Accounting Entity usually represents a legal or business entity, which owns its general ledger. Every
single transaction only belongs to an Accounting Entity. Accounting Entity can also be defined as the
owner of certain master data among the enterprise. Accounting Entity is alphanumeric, maximum
length is 22 characters.

Location

A location is a physical place that is associated to a transaction. A location is owned by a single
accounting entity, and may be used by multiple accounting entities. Location is alphanumeric, maximum
length is 22 characters.

Infor ION Development Guide | 14

BODs and messages

Message headers

Some header fields are identified as optional and some are mandatory in message headers.

Mandatory fields

Applications must guarantee the required fields are filled with correct values and format. Otherwise the
message cannot be delivered or processed by consuming applications.

These header fields are required:

TenantID
The Tenant Id identifies the message as belonging to a specific tenant.

See the explanation in General concepts on page 13

MessagelD
The Message Id is the unique identifier required for each message. See the explanation in General
concepts.

BODType

The BOD Type header is used in ION Service to determine the verb and noun contained in the message.
The verb and noun are used in routing algorithms. They are also used by client applications to filter
messages from the inbound message queue. This header is case-sensitive and must follow the case
of the verb and noun as used in the OAGIS schema. In the BOD Type, verb and noun are connected
using a dot, that is: [verb].[noun]. For example, Process.PurchaseOrder Or Sync.Shipment. We
recommend that you use a noun name with maximum length of 30 characters. The verb does not
exceed 11 characters. Acknowledge is the longest supported verb name. The maximum length of a
BOD Type is 100 characters.

FromLogicallD
The Logical Id of the sending application. This Id is used to identify an application. Every application
must have a unique identifier so that ION can direct documents to that application.

An example of a logical Id is:
lid://infor.eam.myeaminstance

For maximum length and other details, see the explanation on logical ID in General concepts on page
13.

Note: In case of network (tenant-tenant) connection.

When messages are transferred to a different tenant, the original source FromLogicalIDis replaced
with the logicallD of Network connection point on the target side.

ToLogicallD
The Logical Id of the destination application.

» Explicit routing:

ION Service routes the message according to the Logical Id provided. This Logical Id must be
valid for the specified routing rules.

You must use explicit routing for BODs that have an Acknowledge or Show verb.
Note: In case of network (tenant-tenant) connection.

Infor ION Development Guide | 15

BODs and messages

When messages are transferred to a different tenant, the original ToLogicallID is replaced with
the 'default’ value on the target side.
* Implicit routing:

The sending application is not aware who is interested in its message. ION Service routes the
message according to specified routing rules. Therefore, the ToLogicalId header must be set
to 1id://default

You must use implicit routing for BODs that have a Sync, Process, Load, Post, Update, Get, or
Confirm verb.

For maximum length and other details, see the explanation on logical ID in General concepts on page
13.

Optional fields

The sending application must leave the optional header fields out or ensure they are filled correctly,
consistent with the BOD XML contents.

In ION the header fields are not filled if they are missing or containing blank fields; but the data is
transported. The receiving application can use the values if they are available, otherwise it can fall
back to the BOD XML contents. The optional header fields are not used in all connectors. For example,
the values of the header fields are not passed on to the stored procedure of a database connection
point.

The optional header fields values cannot be null. Using 0 or a blank string “” is allowed. When using
an Oracle database for in-box and outbox, blank strings are treated as null. Consequently:

* When your application tries to write an optional header field with a blank string value to the outbox
in Oracle, the insert action fails.

* When delivering a message to an in-box in Oracle, optional header fields with a blank string value
are skipped in ION. This is to avoid failure of the message delivery.

Note: The data for the header fields is usually also available inside the BOD message. The sender is
responsible for the consistency between the data in the header and the data inside the BOD. Header
fields as set by the sender are not corrected in ION.

This list shows the header fields to identify the document that is included in the BOD.

e AccountingEntity
¢ Location

¢ DocumentId

* RevisionId

e VariationId

For the definition of each of these fields, see Documentation Identification on page 14.

Various header fields are available to support batch processing for large documents. In case of batch
processing, the data can be sent in multiple BODs. The batch information is included inside the BOD,
in the BODID element. Including it in the header can help the receiving application to handle the
messages belonging to the same batch without opening the BOD messages.

Database connection point AnySQL type is populating batch headers.

Infor ION Development Guide | 16

BODs and messages

This list shows the header fields to support batch processing for large documents:

BatchId
BatchSequence
BatchSize
BatchRevision
BatchAbortIndicator

For details on these fields, see Sending messages in batch on page 44.

To further describe the message content, you can use these additional header fields:

Instances
Instances header is used to store count of object instances in the message. For example:

¢ For a streaming JSON message, it indicates the number of instances in the stream.

« For a Show BOD that includes multiple instances, it indicates the number of instances in the
DataArea.

Source

Source header can be used to preserve information about the message source. In case read file
action of File Connector is used, the source header is automatically populated with the source file
name including file extension.

Custom

Custom headers can be used to preserve any other type of information that is not covered by other
headers. You can use up to three custom headers per document. Each header must have the
Custom_ prefix.

Deprecated field

'‘Encoding' is an optional header field which is deprecated.

Details of Encoding see Documents encoding on page 26.

Infor ION Development Guide | 17

Verbs and Verb Patterns

Chapter 3: Verbs and Verb Patterns

Standards are applicable to send your documents through ION and to enable all ION functionality for
your document.

Functionality such as content-based routing and event monitoring. These standards are relevant for
all documents, including custom documents.

Verbs

An important concept related to the BODs is the system of record. This is the application instance that
owns a business object. A system of record can own all instances of a noun or it can own part of the
instances.

Being the system of record or not determines the verbs to be used:

* Sync is sent from the system of record.

» Process, Get, Load or Update are requests that are sent to the system of record. For Process, the
system of record will send an Acknowledge in reply. For Get, the system of record will send Show
in reply.

» Confirm is a special type of verb. It is used for noun ‘BOD’, and it is sent when an error occurs in
processing inbound BOD.

This table shows which verb to use for a specific goal:

Goal Verb(s) to use
Publish changes on data owned by my application Sync

Request changes on data owned by another ap- Process/Acknowledge

plication

Retrieve data owned by another application Get/Show
Initial load, recovery Get/Show (*)
Report an exception Confirm

(*) This is the preferred approach. In theory you can use Show without Get, but then the sender must
know the address (logical ID) of the receiver. An alternative is to use Sync. Especially when adding a
new system of record. But when using this verb, event monitors or activation policies can be triggered.

Infor ION Development Guide | 18

Verbs and Verb Patterns

This is what you do not want if Sync messages were already published before for the same data set.
Because the messaging is asynchronous, the application that sends the process must have a way of
handling the pending state until it receives the Acknowledge. For example, when requesting creation
of a new item, the requesting application cannot use the item as if it were there already. In the meantime
the application can use a specific status for the item such as ‘Pending’. Do not use other verbs. In
addition to the listed verbs, ION supports using the Load and Update verbs. These are meant for
integrations where data is loaded into an application where the application must avoid refusing the
data. For example in an EDI scenario.

Action codes

The verb only indicates the action at a high level. It does not indicate whether a document is created,
updated, or deleted. For such details, an action code can be included in the BOD. The action code is
an attribute that is part of the verb section.

This table shows action codes for request verbs (except Get):

Action Code Description
Add A new business object instance is created.
Replace A business object is changed and the complete business object is available

in the message.

Change A business object is changed and the message only contains the document
ID and the changed properties. It is not recommended to use this action code.

Delete A business object is deleted.

This table shows action codes for the Acknowledge response verb:

Action Code Description

Accepted The business object was created, changed or deleted in accordance with the
Process request.

Modified The business object was created or changed, but the resulting business object
differs partly from the requested one.

Rejected The creation, change or deletion was not done.

Note: For Sync the action code is the view of the system of record. That may not match the status of
the receiving application. For example, SyncMyDocument with action code ‘Add’ and status ‘Draft’ is
sent by application A. But it is not delivered to application B, because of a filter in the document flow.
When application A sends SyncMyDocument with action code ‘Replace’ and status ‘Approved, then
this will be the first document sent to application B. Application B has to add data, even though the
action code is ‘Replace’.

Infor ION Development Guide | 19

Verbs and Verb Patterns

Sync verb

Sync is sent from the system of record to anyone who is interested (‘broadcast’). It indicates that a
business object was created, changed or deleted. The action code can be Add, Replace or Delete. Do
not use action code Change. Use Delete only for tenant-level master data.

Application | sy

System of

Application

——Sync—H ION

record —
Yre—l Application

In case of failure for one of the recipients
(other recipients can accept the documents).

Application
Application /ST“M
System of Syne—H| ION
record _—
Conr Application
Mfirm_|

Publishing a Sync BOD

If you are the owner of a piece of business object data that can be represented in a BOD document.
You can send Sync BODs to inform other parties about the current status. It is important to find the
right balance when publishing Sync BODs. You do not want to publish too many BODs and not all
changes to a document are relevant for the outside world. However, publishing less BODs can limit a
customer when creating an integration or when using event management or workflow.

Take this into account:

1

When is my business object complete?

In case of order entry, when the order header is saved but the lines are not added yet. It is not
useful to publish a sync BOD for the order document. On the other hand, don’t be too late. For
example, you can say “l will not publish this document until it has status ‘Approved’, because it is
still being updated”. But this means that an event monitor cannot generate an alert until the document
is Approved, which can be too late for corrective action.

Which status changes are relevant?

It is hard to give general guidelines. What is important for one business document may not be
important for another document. Changing a description or adding a note may not be relevant
outside the context of your application. Changing the status or changing important data such as
amounts or dates will usually be relevant.

When is my business object at the end of its lifecycle?

Infor ION Development Guide | 20

Verbs and Verb Patterns

Usually data is not deleted but archived when a business object is no longer current. This is
important to sync out. It will inform other applications to not use the business object anymore.

Process and Acknowledge verbs

Process is a request sent to the system of record to add, change or delete a business object. Action
codes for Process: Add, Change, Delete. Acknowledge is the reply sent back to the requestor. Action
codes for Acknowledge: Accepted, Modified, Rejected.

—Process—H —Process—#
Application
Applicalion | anowisdge ION Acknowledge | System of
accepted or accepted or
maodified madified ieil:
In case of failure:
—Process—H [——Frocess—y
Application
L Acknowledge Acknowledge
Application rejected ION rejected System of
record
—Confirm—

Because the messaging is asynchronous, the application that sends the process must have some way
of handling the pending state until it receives the Acknowledge. For example, when requesting creation
of a new item, the requesting application cannot use the item as if it were there already. In the meantime
the application can use a specific status for the item such as ‘Pending’.

When sending a Process BOD with an 2dd action code, the system requests a new record to be
created in the Systems of Record (SOR), at this point the unique ID of the object is yet to be created
in the SOR. Hence no Document Id must be populated in the Process BOD, but is populated in Ac
knowledge BOD when the record is successfully created in the SOR.

When the Process BOD gets action code Change the sending system requests a record to be either
modified or deleted or to kick off a process related to the data object sent through the BOD. In this
case Document Id, and Variation Id must still be populated to identify corresponding record in SOR.

Infor does not use action code Delete in Process BODSs.

Get and Show verbs

A Get request is sent to the system of record to retrieve one or more business objects. A ‘query language’
kind is used to select the business object(s). The Show is the reply to a Get request. In Infor, the Show
is the only BOD that can contain multiple nouns instances. A Show can also be sent without a Get

Infor ION Development Guide | 21

Verbs and Verb Patterns

request. This can be used to push data for initial load or recovery. We do not recommend this, because
it requires that the sender of the Show must know the applications that are interested in this message.
No action codes are used in Get and Show.

Get—h Gat—
Application
Application —Show— ION ¢ ow System of
record
—Show—— M
In case of failure:
Get—p Get—r
Application
- Show l Show
Application 4—>""— ION ? System of
record
H—Confirm—-

The Get verb is used to request data from a system of record (SOR). Either for:

* The purposes of an initial load or reload.
» To get specific instances of a document that the sending system typically does not receive.

Include the Document Id if the Get BOD requests a specific object from the receiving system. Otherwise
a selection criteria through expression element is used.

Load and Update verbs

Load and Update are used in special cases. The loaded documents cannot be refused by the system
of record. These verbs are typically used for EDI. The Load verb is used primarily when a document

is created by a trading partner and then passed into the SOR for the noun. Therefore in similar Process,
there is no Document Id to specify in the BOD. Load is sent to the system of record to add an object.
The action code will always be Add. Update is sent to the system of record to notify of a change. The
action code will always be Replace.

Infor ION Development Guide | 22

Verbs and Verb Patterns

Load or Load or Application
t
update N ION update

Application System of

record

In case of failure the system of record is not supposed to reject the document,
but an error can occur:

Load or Load or Application

Application 2Pl joN update

System of
record
H—Confirm—y

Confirm BOD

A ConfirmBOD is sent by an application when processing any inbound BOD and something has gone
wrong. A ConfirmBOD is always handled inside the ION Service, apart from ION it can never be sent
to another application.

When to send Confirm BOD

When an exception that results in an inbound BOD not being processed occurs. The application must
abort the transaction and send a ConfirmBOD.

Sending Confirm BOD from Process BOD

When sending a ConfirmBOD for a Process BOD, also send an Acknowledge with action code ‘Rejected’.
Include a ReasonCode to explain the problem. The sender must be informed through the Acknowledge.
In an Acknowledge BOD you must include the original ApplicationArea from the corresponding Process
BOD. If you cannot get the original ApplicationArea, you can send a ConfirmBOD without an
Acknowledge ‘Rejected’ BOD.

Example of Use verbs

Let us assume that three applications exist:

* Product Data Management: maintain product data (system of record for the ItemMaster noun).
» Order Management: handle sales orders (system of record for the SalesOrder noun).
» Sales: view the products and place orders

In this case, these BODs can be used to integrate these applications:

Infor ION Development Guide | 23

Verbs and Verb Patterns

Day to day business:

Product Data Management Order Management
\‘ ProcessSalesOrder /.‘/
Sales AcknowledgeSalesOrder
SyncSalesOrder
Initial load:
Product Data Management Order Management

GetltemMaster /
\ GetSalesOrder /
ShowSalesOrder

Sales

Fragmented data

Data for a single business object can be stored in multiple applications. But it is strongly advised that
at any point in time one application is the owner of a specific piece of information.

If parts of the business object are owned by multiple applications, an enrichment or pipeline pattern
can be used. For example, an ItemMaster business object is partly owned by a Product application
and partly by a Pricing application. It is assumed that a third application exists called Projects. This
application requests items to be created (using Process BODs) and must receive messages if an item
is changed (using Sync BODs). See this diagram for the flows you can use:

Creating new items:

Process ltemMaster Process [temMaster
{document including {document excluding
pricing data) pricing data)
— —
Projects Pricing Products
— —
Acknowledge ltemMaster Acknowledge ItemMaster

Publishing updated item information:

SyncltemMaster sync.ltemMaster
(document excluding (document including
pricing data) pricing data)
— —
Products Pricing Projects

For more information about verb definition and context to use, see the Infor Messaging Standards in
Message contents on page 26.

Infor ION Development Guide | 24

Verbs and Verb Patterns

Network connection

Reply verb patterns, such as Process and Acknowledge, Get and Show, Load and Update, have some
limitations when the source and target applications are in different tenants.

In this scenario, the target application does not receive the original source FromLogicallID inthe
message header and is therefore not able to set ToLogicalID directly to the source application. The
reply message is delivered to the source tenant with ToLogicalID 'default'. Then the automatic
fallback mechanism ensures that the message is delivered to the source application. If there are more
applications producing the same request message in the source tenant, each reply message is delivered
to all of them.

Infor ION Development Guide | 25

Message contents

Chapter 4: Message contents

Miscellaneous Infor messaging standards are supported by ION which applications must follow.

Noun references

Many nouns are referenced inside other nouns, both master data and transactional nouns. Referenced
information can be found inside a BOD in these ways:

» Specific references used for transactional data, end with the word Re ference and have the noun
name at the beginning.

» The generic reference of transactional data through the DocumentReference element that uses
the type attribute which contains the noun name of the referenced object.

« Used with master data which uses the name of the object as the reference and includes additional
information with the reference information.

Documents encoding

An Infor standard is that all XML documents use the UTF-8 encoding. Therefore, there is no need to
set this key. The default is UTF-8.

All readers and writers to the database tables that are used by the Infor Application Connector must
use the exact same encoding mechanisms. When writing a message to the COR_OUTBOX ENTRY table,
serialize your XML string to the C_XML column as a UTF-8 byte stream. Similarly, when reading the
COR_INBOX ENTRY table. You extract your XML string from the C_XML column by converting the
bytes as a UTF-8 byte stream.

If you do not use the UTF-8 decoding when reading the XML from the table, and the XML contains
characters that require two bytes, the XML can be invalid. Also the formatting is affected. A worst case
scenario is that you cannot parse the XML document.

Infor ION Development Guide | 26

Message contents

Date and time

When working on ION integrated date and time format fields, follow these guidelines:

» Dates and times in BODs are in UTC time.
* They must be represented in a common format, using the capital letter Z at the end of the value.

For example: 2009-08-13T15:30Z.

Infor ION Development Guide | 27

Connecting to ION

Chapter 5: Connecting to ION

The preferred approach to connect to ION is using the Infor Application Connector.

The application will be truly event-driven. BODs are used as the standard interface. Using BODs in
combination with the inbox/outbox avoids unwanted dependencies and makes the integration robust.
In ION, hardly any configuration is required to connect your application.

On the other hand, you must change or extend the application to enable the application to publish and
receive BODs. Consequently this is less suitable for customer-specific integration of legacy applications.

Alternatives in that case are third-party connectors such as Database Connector, Web Service
Connector, or Message Queue (JMS) Connector.

Infor Application Connector

The Infor Application Connector makes use of inbox/outbox tables in your applications. ION will post
messages into your inbox and will pick up messages from your outbox.

This diagram shows an example of two applications exchanging messages using inbox and outbox
tables:

=- -
“

App1 Application Conne ctor App2 Application Connector
1 e 1 e

—— ———

] — X 3

o] (]] (B
Appl App2

To use the Infor Application Connector:

1 Create the inbox/outbox tables. Inbox and outbox tables must be created inside your application.
The tables will be accessed by ION through JDBC. SQL scripts are available from ION Desk.

2 Implement the sending and receiving of the BODs. When a BOD must be published, create the
BOD XML and determine the correct values for the header fields. Then insert the data into the
Outbox tables. When a BOD is received in the Inbox tables, pick up the BOD XML and based on
the content insert or update you application data.

For details, see Using the Infor Application Connector on page 36.

Infor ION Development Guide | 28

Connecting to ION

Using third-party connectors

Alternative connectors

Some alternatives for the Infor Application Connector exist, because ION provides a set of third-party
connectors.

The most important third-party connectors are:

* Message Queue (JMS) Connector. Messages are sent and received through message queues
using the JMS standard.

* Web Service Connector. ION can invoke existing web services to send or retrieve data.

» The Database Connector. Data is read from or written to the database directly through stored
procedures.

* File Connector. Files are used to send or receive messages.

For details on these connectors, see the Infor ION Desk User Guide .

Advantages and disadvantages of each connector

Using the Infor Application Connector is preferred, because it is decoupled and event-driven, and the
application can validate the correctness and consistency of incoming data. From a modeling and
management perspective the Infor Application Connector also is the best choice, because the modeling
is very simple and the management in ION Desk is the richest for this connector.

If you cannot use the Infor Application Connector, you can use the following sequence as a rule of
thumb to select one of the other connectors:

1 Message Queue Connector
2 Web Service Connector

3 File Connector

4 Database Connector

This table shows advantages and disadvantages of the individual third-party connectors:

Connector Advantages Disadvantages

Message Queue (JMS) Event-driven solution, so it The message queue only pro-
closely matches the ION archi- vides a technical communication
tecture. channel. Behind the message

gqueue the messages must be
created or processed. If the
message is not a BOD, it must
be transformed.

Infor ION Development Guide | 29

Connecting to ION

Connector

Web Service

File

Advantages

No change required in the appli-
cation, existing web services
can be used.

Suitable for legacy applications
that only support a file-based
integration. Event-driven.

Disadvantages

In the model you must transform
the messages from BOD to web
service input and from web ser-
vice output to BOD. Existing
web services often do not offer
operations to retrieve only the
changed objects. Transactional-
ly less robust than database or
message queue connector, so
higher risk or delivering the
same message twice in case of
interruptions or timeouts.

The application at the other side
must be in a position to create
files in a format that ION can
process or read files as provid-
ed by ION. The data must be
transformed to a BOD (XML)
message. Multilevel data
(header and lines) can be for-
matted in multiple ways in one
or more files, while the File
Connector does not support all
options. Transactionally less
robust than database or mes-
sage queue connector, so high-
er risk or delivering the same
message twice in case of inter-
ruptions or timeouts.

Infor ION Development Guide | 30

Connecting to ION

Connector

Database

Advantages

No change required in the appli-
cation (except the addition of
stored procedures in the
database schema).

Disadvantages

Risk for data integrity, because
you bypass the application that
owns the database, while updat-
ing the database directly. You
must write stored procedures to
query the database and trans-
form the result to XML or to re-
trieve the data from the incom-
ing XML and update the
database . These procedures
can become complex when
handling multi-level objects
(such as headers and lines).
Additionally these procedures
will be database-dependent. Not
event driven. The database
must offer data to retrieve the
new or changed data, such as
log tables. Timestamps can be
used for new data, but will not
expose all intermediate changes
that occurred between two
scheduled read actions.

Infor ION Development Guide | 31

Infor Application Connector (IMS)

Chapter 6: Infor Application Connector (IMS)

This section explains the adoption procedures that applications must fulfill to integrate with ION through
the ION Messaging Service, (IMS), connection point.

IMS is a connector that allows applications to integrate with ION through REST/JSON APIs. Unlike the
IO Box connector, IMS does not require direct access to an application’s database. Instead, IMS
communicates through the secured https protocol, through OAuth 1.0 for authentication. Therefore,
IMS is a loosely coupled connector that makes integrations easier.

IMS specifications include well defined API methods. These methods are implemented by ION and
must be implemented by the concerned application. After this, they can push messages to each other
through the APIs.

IMS can send and receive multiple message requests in parallel. Therefore, sequence of message
transport is not guaranteed when using the IMS connector. If sequencing is important, you must use,
for example, a variationlID.

The current IMS protocol supports two versions: v1 and v2. The v2 protocol offers the same functionality
as the v1 protocol and more. Therefore, new adopters should use the v2 protocol. The v1 protocol is
not described in this document.

Message or multipartMessage
In the v2 protocol two variants of message sending are supported:

* The message method

This method is still supported to be compatible with v1. The message method has a disadvantage:
you must include the payload, that is, the actual message content, as a property value in a json
message. This often requires base64 encoding to ensure you remain json compliant.

e ThemultipartMessage method
This method has less overhead in processing the messages, especially when larger messages
are involved.

Note: We strongly recommend that you use the multipartMessage method.

Encoding

For transport performance reasons, especially where it involves larger messages, you can compress
the message before sending. In that case you can use the DEFLATE or GZIP encoding. ION ensures
the message is decompressed before it is delivered to the receiving application. If you use the message

Infor ION Development Guide | 32

Infor Application Connector (IMS)

method, you must encode the compressed message in base64 format. For the multipartMessage
method, this is not required.

IMS interaction

Application sends a message to ION

Configuration
Ensure you know in what format you expect to exchange information with ION.

* messageMethod = "message” or “multipartMessage”.

» supportedEncoding:
* message: NONE, GZIP64, DEFLATEG64, or BASE64
¢ multipartMessage: NONE, GZIP, or DEFLATE

* supportedCharacterSet : UTF-8

* Know your logical-id.

* IMS version is set to v2.

Prepare for sending messages

These methods are used by your application to get information and verify whether message processing
is enabled:
* GET <Application>/service/ping

Checks whether ION can be reached and you have the correct OAuth 1.0a keypair.

Note: Although the ION ping still returns a body, ignore that body. That body response is deprecated
and isl no longer sent when API v1 is no longer supported.
e GET <ION>/service/versions

Checks whether ION supports this version (v2).

Send a message
This is the proposed sequence when your application sends a message to ION:

1 GET <ION>/service/ping
If this is successful, continue. Otherwise retry and raise errors.

For the retry, we recommend that you increase the delay between retries if the problem exists
longer. To prevent log flooding, consider aggregating the ERROR message.

2 GET <ION>/service/versions

Infor ION Development Guide | 33

Infor Application Connector (IMS)

Checks whether ION supports this version (v2). Halt if this fails; you must upgrade ION to a version
that supports v2.

POST <ION>/service/v2/message or POST <ION>/service/v2/multipartMessage
Http header X-TenantId

If sending the message fails, perform one of these actions, based on the error code:

« Decide to retry, that is, return to step 1.
+ Raise an ERROR for the specific message and continue with the next message.

If the message was sent successfully, continue with the next message.

ION sends a message to an application

Configuration

Ensure an Infor Application (IMS) connection point is configured in ION. This connection point must
be used in a document flow. Ensure this document flow is activated.

Prepare for sending messages

Ensure your application exposes these methods, which are used by ION to get information and verify
whether message processing is enabled:

GET <Application>/service/ping

Checks whether ION can connect to your application and checks whether ION is authorized for
your application.

GET <Application>/service/protocol

Called by ION to retrieve, from the application, the expected IMS API version and protocol
parameters.

POST <Application>/service/v2/discovery Http header X-TenantId

Called during modeling of the connection point in ION Desk. Used to retrieve, from the application,
the documents that are supported to be exchanged.

Send a message

When a message is being sent, ION executes these methods in the given sequence:

1

GET <Application>/service/ping

If this is successful continue, otherwise retry and raise errors.

GET <Application>/service/protocol

With this call ION retrieves the IMS protocol parameters from the application.
These protocol parameters dictate how ION sends the message in the next step.

POST <Application>/service/v2/multipartMessage or POST <Application>/ser
vice/v2/multipartMessage Http header X-TenantId

If sending the message fails, ION performs one of these actions:

Infor ION Development Guide | 34

Infor Application Connector (IMS)

* Generates a Confirm BOD and continues with the next message.
* Retries from step one onward for the same message.

If the message was sent successfully, ION continues with the next message.

API specifications

For details on these methods, see the swagger documentation for IMS.
This documentation is exposed by your ION installation through this URL:

https://<ION host>:<ION router port>/api/ion/messaging/service/swagger/v2/
ui

For a typical installation the port is 9543.
This is the https port of the ION Grid XI Platform router.

Infor ION Development Guide | 35

Using the Infor Application Connector

Chapter 7: Using the Infor Application Connector

This section explains the adoption procedures that applications must fulfill to integrate to ION using
the Infor Application Connector.

You must have some specific knowledge about these topics:

» Application connection points
* In-box and outbox tables
* Removing messages from the in-box and outbox tables

Application connection points

To connect an application to ION, the application owner must define which BODs that application can
send and receive. To define the BODs for an application, you must create an application connection
point. You can export connection points to an XML file. When you export the connection point without
properties, you can use it as a template for the application.

See the Infor ION Desk User Guide on how to create and export connection points.

Inbox and outbox tables

All applications must add some of these new tables to their existing database so that the application
can read and write the tables in the same transaction as their business logic:

- COR_OUTBOX_ENTRY

« COR_OUTBOX_HEADERS

« COR_INBOX_ENTRY

« COR_INBOX_HEADERS

- ESB_INBOUND_DUPLICATE

Caution: When an application adds a new message to the COR_OUTBOX_ENTRY and
COR_OUTBOX_ HEADER tables, the inserts must be performed within the same transaction. Inserts
that are not performed within the same transaction cause data corruption.

To download the scripts to create those tables:

Infor ION Development Guide | 36

Using the Infor Application Connector

1 Start ION Desk.

2 Select Configure > ION Service.

The Configure ION Service page is displayed.

AW

Click the Configuration Files tab and then click Download Scripts to create I/O Box.
Specify a file name and click Save. A zip file is downloaded.

5 Extract the zip file and use the db vendor-specific sql files that are applicable to you. For
Unicode-compatible BOD header fields, use the scripts available with the _unicode suffix.

Note: The script might also generate a COR_PROPERTY table. This table is included for future use,

SO you can safely ignore it.

COR_OUTBOX_ENTRY

This table shows the COR_OUTBOX_ENTRY table API:

COR_OUTBOX_ENTRY
C_ID

C_XML
C_TENANT_ID
C_LOGICAL_ID

C_MESSAGE_PRIORITY

Description

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

The message that you are sending. The message
must be encoded as described below.

The Tenant Id identifies the message as belong-
ing to a specific tenant. A tenant is a hosting or
software as a service (SaaS) concept where all
the data for one tenant is always separated from
all the data of other tenants. There is no cross-
sharing or viewing of data with other tenants. This
concept requires all the participants in the mes-
saging to share the same identity for the same
tenant. Therefore, a Tenant ID of " infor " must
have exactly the same meaning on every system
in the messaging space.

This field is added since ION 11.1.2. It is added
by running the scripts present in the ‘3.0 folder
in your inbox/outbox. If present, then this field
must contain the value of the 'from logical id' of
the application that publishes the BOD and it must
be populated with the ‘lid://’ prefix.

Messages with a higher priority are sent before
messages with a lower priority. You can set the
priority from 0 to 9, 9 being the highest priority.
High priority messages should be limited - most
messages should be set at 4.

Infor ION Development Guide | 37

Using the Infor Application Connector

COR_OUTBOX_ENTRY
C_CREATED_DATE_TIME

C_WAS_PROCESSED

Description

The date and time the message was inserted into
the outbox table. You must specify the time in
the variable in UTC format.

Users should never provide a value for this col-

umn. The column is used by ION Service to de-
termine whether a message has been sent. Un-
processed messages are marked as 0; processed
messages are marked as 1.

ION Service removes all the processed messages older than the number of hours specified in the

cleanup advanced properties.

COR_OUTBOX_HEADERS

This table shows the COR_OUTBOX_HEADERS table API:

COR_OUTBOX_HEADERS
C_ID

C_OUTBOX_ID

C_HEADER_KEY

C_HEADER_VALUE

Description

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

Used to join the headers to the message's
COR_OUTBOX_ENTRY row. As such, this value
should be the same as the message's
COR_OUTBOX_ENTRY C_ID column.

The key used to describe the type of header. For
valid keys, see "Message headers".

The header's value.

If any of the required headers are not provided, ION Service creates a Confirm BOD for that message.

For the headers to be used, see Message headers on page 15.

COR_INBOX_ENTRY

This table shows the COR_INBOX_ ENTRY table API:

COR_INBOX_ENTRY
C_ID

Description

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

Infor ION Development Guide | 38

Using the Infor Application Connector

COR_INBOX_ENTRY
C_XML

C_TENANT_ID

C_LOGICAL_ID

C_MESSAGE_PRIORITY

C_CREATED_DATE_TIME

C_WAS_PROCESSED

COR_INBOX_HEADERS

Description

The message you are receiving. The message
must be encoded as described.

The Tenant ID identifies the message as belong-
ing to a specific tenant. A tenant is a hosting or
software as a service (SaaS) concept where all
the data of one tenant is always separated from
all the data of other tenants. There is no cross-
sharing or viewing of data with other tenants. This
concept requires all participants in the messaging
to share the same identity for the same tenant.
Therefore, a Tenant ID of " infor " must have ex-
actly the same meaning on every system in the
messaging space.

This field is added since ION 11.1.2. It is added
by running the scripts present in the '3.0' folder
in your inbox/outbox. If present, then this field
contains the "To logical id' value of the application
to which the BOD is delivered.

Message priority as provided by the application
that sent the message.

The date and time the message was inserted into
the inbox table. Date and time are in UTC format.

ION Service always sets this to 0. It is the appli-
cation's responsibility to remove processed
messages.

This table shows the COR_ INBOX _HEADERS table API:

COR_INBOX HEADERS
C_ID

C_INBOX _ID

C_HEADER_KEY

Description

The row's primary key - all of the provided
database schemas have this set as auto-incre-
ment.

Used to join the headers to the message's COR_
INBOX _ENTRY row. As such, this value should
be the same as the message's COR_ INBOX
_ENTRY C_ID column.

The key used to describe the type of header. For
valid keys, see "Message headers".

Infor ION Development Guide | 39

Using the Infor Application Connector

COR_INBOX HEADERS Description
C_HEADER_VALUE The header's value.

Incoming messages are placed in the COR_INBOX_ENTRY and COR_INBOX_HEADERS tables. All
rows are inserted in the same transaction.

ESB_INBOUND_DUPLICATE

This table is used by ION to maintain the unique Message IDs. ION uses this table to reject duplicate
messages in the ION Service. Applications should not use this table.

Removing messages from the inbox and outbox tables
ION Service removes messages from the COR_OUTBOX_ENTRY and COR_OUTBOX_HEADERS
tables. Removing these messages is achieved in these ways:

» The message is deleted after it is successfully sent by ION Service.
» The message is deleted if it has been successfully sent and is older than XX hours. ION Service
checks for expired messages when it is started, and then checks every hour.

By default, the second option is used. By not deleting the messages immediately, the Manage tab in
ION Desk monitors the COR_OUTBOX_ENTRY table and reports the number of processed and
unprocessed messages. To change this behavior, set the application polling property within ION Desk:

Delete Processed Messages=true

Therefore, ION Service deletes the message after it is sent.

Caution: ION Service does not remove messages from the
COR_INBOX_ENTRY/COR_INBOX_HEADERS tables. The application must provide the code to
clean up these tables. If the tables are not cleaned up, the file system of the database server can get
full.

Polling Message Preference

When you implement ION integration you can decide to use one of these options:

* single inbox/outbox shared by multiple sites (represented by multiple Logical Ids)
» single inbox/outbox shared by multiple tenants in the Cloud.

Infor ION Development Guide | 40

Using the Infor Application Connector

A ‘Message processing preference in 1/0 box’ setting is available in ION Desk Connection Point
Advanced Settings, to cater for two requirements.

Single I/O Box for Multi-tenant

In a multi-tenant environment a single set of Inbox and Outbox tables of the application can be shared
by multiple tenant instances. In such situations an application connection point must process messages
belonging to its own tenant.

To setup Single I/O Box for Multi-tenant:

1 Goto Connection Point definitionConnectionAdvancedMessage processing preference in
I/O box.

2 Select the by Tenant option to be true.
3 When publishing a BOD from your application, specify this information:

*+ The C TENANT ID value ofthe COR_OUTBOX ENTRY table.

* The Tenant Id key in the COR_OUTBOX HEADERS table with the correct tenant value. It must
match with the Tenant value specified in the connection point.

Ensure you do not have more than one connection point from the same tenant sharing the same Inbox
and outbox tables.

The Tenant value is matched in ION in a case-sensitive manner. If the tenant value is blank in the
connection point, the default tenant value of 'INFOR' is assigned. To avoid inconsistencies in tenant
processing, define the Tenant Id according to the Infor standards.

Duplicate detection of messages is not enforced by ION. Under uncommon circumstances such as an
incomplete message processing, this results in delivering the same message twice to an inbox. The
application must be prepared to receive duplicate messages.

Single I/O Box for Multi-Logical Ids

This addresses requirements from applications which have multiple sites where an individual connection
point is defined per site in ION. These applications use the same Inbox and Outbox table between
them. In such situations, messages based on Tenant and based on Logical Id must be processed.

To setup Single I/O Box for Multi-Logical Ids:
1 Upgrade the I/O Box to version 3.0. Go to the 3.0 folder in your 1/0O box and run the I/O box script
<db> upgrade.sqgl.

The downloaded zip file contains these folders: 1.0 and 3.0. The folder 1.0 contains the scripts to
create a base 1/0 box for the standard databases. This includes: MS SQL server, Oracle, DB2,
DB2400 and MySQL.

The 3.0 folder contains the scripts required to prepare your I/O box to support multiple logical Ids
sharing the same I/O box. Run the scripts in the 3.0 folder to create I/O Box tables in your

Infor ION Development Guide | 41

Using the Infor Application Connector

application. For Unicode compatible BOD header fields, you can use the scripts available in the
Unicode folder.

2 Specify the message processing preference to be by logical Id in each connection point defined
for your application.

Goto Connection Point definition > Connection > Advanced > Message processing preference
in I/O box.

Select by Logical ID to be true and select by Tenant to be true.

Before you proceed, check if the column called C_ LOGICAL ID existsin both COR_OUTBOX ENTRY
and COR_INBOX ENTRY.

3 When you publish BODs from your application, ensure that the correct values are specified in these
columns:

*+ COR_OUTBOX ENTRY table, specify C_LOGICAL ID with your actual Logical Id value.
* COR _OUTBOX HEADERS table, specify the FromLogicalId key with the correct Logical Id
value.
¢ Both Logical Ids must match the Logical Id value specified in the connection point.
Note: The Tenant and the Logical Id value are matched in a case-sensitive manner. To avoid

inconsistency in tenant processing, specify the Tenant Id and the Logical Id according to the Infor
standards.

When these properties are not selected, you must ensure that each Infor application connection point
uses its own Inbox and Outbox tables. This will be guaranteed by using different URLSs. If you use the
same URL in multiple connection points, then use different users. Ensure the users are linked to different
database schemas in the database management system.

Infor ION Development Guide | 42

ION Connecting Considerations

Chapter 8: ION Connecting Considerations

There are some considerations for applications to take into account when implementing integration
through ION.

Handling transactions

Ensure the publishing and processing of the BODs is done in such a way that no data is lost. Publish
the BODs inside the application transaction that inserts or changes the corresponding business data.
Or, if publishing is done offline, have another mechanism in place that ensures no BODs are lost.

Because ION is event driven you must consider how to publish historical data before you enable ION
integration with your system. Data consistency must be honored. When handling an incoming BOD,
set the status in the Inbox to ‘1’ (processed) in the same transaction as the database updates that are
done while processing the BOD.

Message sequence

Delivering messages in sequence is not guaranteed. Only delivery is guaranteed (at least once). In
some cases the sequence of receiving is the same as the sequence of sending, but you cannot rely
on this. Many factors can impact the sequence, such as:

» Parallel processing (multi-threading).
» Documents traffic.
* Intermediate steps in the process, such as content-based routing, filtering or mapping.

Take these situations into account:

1 Message Delivered with Delay or Out of Sequence sometimes due to network or BOD traffic BODs
are not always delivered on time or in sequence. Especially in case they reference to each other.
For example; a Sync.ItemMaster BOD reaches the application later than a Sync.Purchase
Order. The application may well send out a Confirm BOD for the Sync. PurchaseOder BOD.
Or is highly recommended to set a retry mechanism to have a few tempts based on intervals to
sort out the message delay or out of sequence issue.

Infor ION Development Guide | 43

ION Connecting Considerations

2 Message Delivered Out of Sequence for Different Verbs of the Same Object. It happens sometimes
when an application awaits the Acknowledge BOD from the SOR for the object via Process BOD.
The Sync BOD of the same object from the SOR arrives prior to any Acknowledge BOD. This is
similar to point 1, caused by BOD traffic or network, and can be solved by a few times retry in turn.
Therefore applications are recommended to include this into IONAdoption consideration.

3 Multiple updates from SOR on same document out of sequence Multiple changes on the same
document may not arrive in the correct sequence. Use the Variation ID to check whether a Sync
message is out of date. If the Variation ID of an incoming message is lower than a Variation 1D
you already processed for the same document type and document ID, then you must not overwrite
the newer information you already have.

4 Data with interdependency break down into a set of documents. This is the same as what is
explained in "Sending messages in batch".

Duplicated messages

When publishing a message in an Infor Application Outbox, the message ID from the header will be
checked. If a message with the same message ID was processed successfully before, the new message
is ignored.

At the end of a flow, in exceptional cases the same message can be delivered twice (guaranteed
delivery ‘at least once’). The receiving party must ignore a message if a message with the same
message ID was processed before.

For that reason, ensure to use a unique message ID when sending a message to your outbox. Otherwise
the message will be ignored. The message ID must be globally unique, so a sequence number generated
by your application is not sufficient.

Sending documents in batch

Avoid sending large documents. Documents up to 5 MB are handled throughout ION.

Do not include large files inside the documents, for example, images or PDF files. Instead, make the
files available in a document management system or another location. Include a reference (URL) in
the document.

Sometimes you must divide a large file into multiple documents. For example, the first document can
contain a header and the first 100 lines. The next document can contain the next 100 lines. Each
document must be valid.

Batch message headers are used to indicate that the document is part of a batch. Batch fields should
not be sent for single documents (batch size = 1).

For BODs, Batch fields are used to indicate that the BOD is part of a batch. The batch fields must be
included inside the BOD XML, in the BODID, and can be included in the message header. The message
header fields are optional. We recommend that you include them. It allows the receiver to handle the

Infor ION Development Guide | 44

ION Connecting Considerations

batch without having to open each BOD to determine the correct sequence. Note that the total length
for the BODID cannot exceed 255 characters.

The data types and maximum lengths of the header fields are specified in the table.

This table shows the fields to use:

Header Field Name of elementin Description

Name BODID

Batchld batchID The unigue ID of the batch. The documents with this
number must be processed sequentially on the receiving
side.
The Batchld is alphanumeric, maximum length is 250
characters.

BatchSequence ©batchSequence The sequence number of this document in the batch.

This is required because the documents can arrive out
of sequence.

The BatchSequence is numeric, the maximum value is
9223372036854775807.

BatchSize batchSize The total number of documents in the batch. This can
be unknown until the last document and omitted for the
other documents.

The BatchSize is numeric, the maximum value is
9223372036854775807.

BatchRevision batchRevision The revision number of the batch. This is used when
one set of documents fails. The complete set can be
resent using a new revision number. The revision num-
ber must be increasing, but does not have to be sequen-

tial.
The BatchRevision is numeric, the maximum value is
9223372036854775807.
BatchAbortindi- abortIndicator This indicator type attribute is set to true when a system
cator that is sending a batch determines that it will not finish.

The receiving system is notified that any documents
received as a part of this batch must be discarded.

The BatchAbortindicator value is either ‘true’ or ‘false’.

For example, publishing daily balance updates through SourceSystemGLMovement BOD. Often you
must split the BOD. It is assumed that the tenant is ‘acme’, the accounting entity is 10 and the location
is 1. The subsequence BODIDs is one of these options:

* Infor-nid:acme:10:1 A:0?SourceSystemGLMovement&verb=Syncé&batchSe
quence=1&batchID=1id://infor.sunsystems.5:1

* Infor-nid:acme:10:1 A:0?SourceSystemGLMovementé&verb=Syncé&batchsSe
quence=2&batchID=1id://infor.sunsystems.5:1

Infor ION Development Guide | 45

ION Connecting Considerations

* Infor-nid:acme:10:1 A:0?SourceSystemGLMovementé&verb=Syncé&batchSe
quence=3&batchID=1id://infor.sunsystems.5:1&batchSize=3

Publish historical data

Due to the synchronous nature of data in an event-oriented architecture, you can only keep data in
sync after your application is integrated with ION.

You may need to consider how to share historical data with downstream systems that are interested
to receive. This concerns the data which may not be amended in your system anymore. We recommend
that you provide a facility to publish historical data when the application is ION-enabled. For example,
driven by end users at time when required. This can happen more than once due to online offline
deployment.

To keep the consistence of message ID and variation ID your system must publish BODs after historical
data is published.

Message reprocessing

When BODs are delivered to your application inbox/outbox tables, it is the application’s responsibility
to consume or reject them due to circumstances. There are options to set intervals in ION Desk to
clean up inbox/outbox tables. You can develop your own clean up scheme considering BODs volume
and storage.

In case of processing inbound BODs fails for business data integrity, we recommend that you develop
a user-driven retry mechanism. For example, workflow integration rather than mandating business
users to submit the document for approval again. For technical reasons, it makes better sense if the
system admin is able to resubmit the same BOD to get through. Same with consuming transaction
BODs, ledger entry or purchase order quite often a retry is mandatory to sort out interdependency of
BODs delivery.

When developing system automatic retry, it is important to retry at reasonable intervals and end the
process if the problem is not solved. This is to avoid deadlock of your integration engine focusing on
a few BODs and leaving the Inbound BODs queue too long to process.

Performance

Good performance is a key to success especially in an event driven integration architecture. Sensible
plan and proof of concept testing with real business scenarios will eliminate substantial issues with
customer implementation after releasing your ION integration.

Infor ION Development Guide | 46

ION Connecting Considerations

Depending on the integration requirements we highly recommend that you take performance into
account during the start and design phase.

Infor ION Development Guide | 47

Adopting Event Management, Workflow, or Pulse

Chapter 9: Adopting Event Management, Workflow,
or Pulse

When the connection to ION is completed, you can adopt Event Management, Workflow or Pulse.

With Event Management you can generate alerts for business data that you publish. The alerts are
created by an event monitor that checks the Sync BODs that are published against a user-defined rule.

Workflow enables you to execute workflows, either based on published business data or by explicitly
starting a workflow. In Workflow you can implement decisions and bring tasks and notifications to users.

You can also create alerts, notifications, or tasks directly from your application. In that case you do not
use Event Management or Workflow, but you directly request the Pulse engine to create an alert,
notification, or task.

Alerts, notifications and tasks

A task is sent if the user is expected to execute a defined task. The user must complete the task in
Infor Ming.le using the Tasks widget in the Homepages or in the Infor Ming.le Mobile application. To
complete a task, the user specifies data or selects a specific action, such as 'Approve’ or 'Reject’, when
closing the task.

An alert means a user must be notified of an exception. It indicates that something happened that is
extraordinary or that is not in line with how the business should run. The user can decide whether to
take action and then close the alert.

A notification is a message to one or more users 'for your information'.

Note: Some differences exist between the features that ION offers for tasks, alerts and notifications:

» The names (labels) of the data elements for an alert are not translatable. For tasks and notifications
created from a workflow the labels are translatable.

* Inalerts, drill-back links are automatically generated based on document references. For tasks
and notifications that are created from a workflow, drill-back links can be configured. To configure
these drill-back links, use drill-back views that are retrieved from the Infor Ming.le configuration.

Infor ION Development Guide | 48

Adopting Event Management, Workflow, or Pulse

When to use Pulse, Event Management and Workflow

Use Pulse if you want to create an alert, notification, or task directly. Your application is fully in control.
The application logic decides whether and when to create an alert, notification, or task and also defines
all aspects such as the data to be included and the user(s) who will receive the item. For tasks, your
application also follows up if required when the task is completed.

Use Event Management if you need alerting, but you want to delegate the monitoring to ION. You do
not have to change your application; the only requirement is that you publish Sync BODs for the business
data owned in your application. You can define rules in ION event monitors. Customers using your
application can adapt the rules to their needs or define new rules. ION monitors the BODs published
from your application and creates alerts in Pulse when required.

Use Workflow if you want to model a business process (or allow your customers to model a business
process) outside your application. Tasks and notifications are created automatically based on the
modeled process. If required, the user interacts with your application based on the tasks that the user
receives.

The following chapters describe:

» How to start workflows from an application.
* How to create alerts, tasks, or notifications from an application.

Infor ION Development Guide | 49

Starting a workflow from an application

Chapter 10: Starting a workflow from an application

This section describes the details of the Workflow BOD and its Process/Acknowledge messages.

You can trigger workflow definitions in various ways. To trigger a workflow instance from an application,
you can use these methods:

» Indirectly, by creating an activation policy or monitor that evaluates Sync BODs that are sent by
this application. When a workflow instance that is started by this method completes and has output
parameters. The activation policy creates a Process BOD of the same noun as the monitored Sync
BOD. This Process BOD is sent to the originating application with the values resulting from the
workflow execution.

» Directly, by sending a ProcessWorkflow BOD. When a workflow instance is started by this
method, an AcknowledgeWorkflow is sent initially to inform that the initiation of the workflow
was successful. When the workflow is completed, another AcknowledgeWorkflow BOD, which
contains the values of the workflow output parameters, is sent back to the application.

For details about how to model and start a workflow and start workflow from activation policy and
document flow, see the Infor ION Desk User Guide.

Starting a workflow through ProcessWorkflow

Create a workflow definition using the ION Desk workflow modeling. The actual process as modeled
inside the workflow can be changed later, but your application depends on the interface of the workflow
definition. The interface consists of the workflow name, the input parameters and the output parameters.
To start a workflow, publish a ProcessWorkflow BOD, including the name of the workflow definition
to be started and the values for the input parameters. This starts the workflow.

See this diagram:

Infor ION Development Guide | 50

Starting a workflow from an application

2
AcknowledgeWorkflow

3

o QN i Tasks and
ocessWorkflow Motifications

Workflow Pulse

O

5 4
AcknowledgeWorkflow Dane

(upon completion)

Application

You receive an AcknowledgeWorkflow BOD when the workflow is created. You receive also an
AcknowledgeWorkflow BOD when the status of the workflow changes. For example, the workflow
is completed or cancelled. If the workflow is completed, the BOD contains the values for the output
parameters of the workflow. You can use the result in your application.

Note the difference between Workflow and Pulse BOD if you use Process verb. For Pulse BODs you
receive only one Acknowledge BOD. For Workflow BOD you receive multiple Acknowledge BODs
to be updated with different statues of the workflow task(s). If you started a workflow but the workflow
is not relevant anymore, you can cancel it. To cancel a workflow, publish a ProcessWorkflow BOD.

See this diagram:

1

ProcessWorkflow to
cancel workflow

2
Cancel Tasks and
MNotifications

Application Workflow » Pulse

3

3
Acknowledge\Workflow
canceled

In this case you receive an AcknowledgeWorkf1low BOD when the workflow is canceled. Specifications
of how to create and cancel Workflow BOD to ION are discussed later.

To start a workflow, add this action code: ProcessWorkflow/DataArea/Process/ActionCrite
ria/ActionExpression/@actionCode.

This table shows the elements you can use in the noun instance, ProcessWorkflow/DataArea/Work
flow:

Element Note

WorkflowDefinitionCode Required. This is the name of the workflow definition as modeled
in ION.

Property/NameValue Properties are required if the workflow model has input parameters.

You must specify values for the input parameters that are required.

Infor ION Development Guide | 51

Starting a workflow from an application

Do not use other elements, such as DocumentID and Status, when initiating a new workflow instance.
These elements are determined by the Pulse engine.

The resulting AcknowledgeWorkflow BODs contain the actionCode with these possible values:

» "Accepted", when processing the request was successful.
» "Modified", to inform about an update in the workflow definition execution.
* "Rejected", if the request could not be processed.

This table shows the elements that are included in the AcknowledgeWorkflow/Workflow Section
if the actionCode is "Accepted":

Element Note

DocumentID/ID Unique identification of the workflow instance in this ION installation.
Status/Code Value is "Initial" to indicate the workflow was started.
WorkflowDefinitionCode The name of the workflow started.

This table shows the elements that are included in the AcknowledgeWorkflow/Workflow section
if the actionCode is "Modified":

Element Note

DocumentID/ID Unique identification of the workflow instance in this ION installation.
Status/Code Can be "Cancelled", "Failed", or "Completed".

Status/Reason Available for Status/Code "Cancelled" or "Failed".
WorkflowDefinitionCode The name of the workflow that was canceled, failed, or completed.
Property/NameValue Only available if the Status/Code is "Completed" and the workflow

has output parameters. The Properties contain the resulting values
of the workflow output parameters.

This table shows the elements that are included in the AcknowledgeWorkflow/Workflow section
if the actionCode is "Rejected":

Element Note
Status/Code Value is "Failed".
Status/Reason The reason for failure.

Canceling a workflow through ProcessWorkflow

To cancel a workflow, the action code, ProcessWorkflow/DataArea/Process/ActionCrite
ria/ActionExpression/@actionCode, must be "Change".

This table shows the elements you can use in the noun instance, ProcessWorkflow/DataArea/Work
flow:

Infor ION Development Guide | 52

Starting a workflow from an application

Element

DocumentID/ID

WorkflowDefinitionCode

Status/Code

Note

Required. Unique identification of the workflow
instance that must be canceled.

Required. This is the name of the workflow defi-
nition as modeled in ION.

Must be "Cancelled".

The resulting AcknowledgeWorkflow BOD contains the actionCode="Accepted" if cancelation was
performed, or actionCode="Rejected" if the cancelation was not possible. The other elements included
are similar to those described for AcknowledgeWorkflow BODs.

See Starting a workflow through ProcessWorkflow on page 50.

Workflow BOD detalils

The definitions of ProcessWorkflow and AcknowledgeWorkflow are available on this site:

http://schema.infor.com

This table shows the elements that exist in these documents:

Element

DocumentID/ID

Status/Code

Status/Reason
WorkflowDefinitionCode

Note

Unique identification of the workflow instance in
this ION installation.

Can have these values:

e "Initial": the request to start a new workflow
instance was performed successfully.

* "Completed": the workflow instance complet-
ed successfully.

e "Cancelled": the workflow instance was can-
celed.

« "Failed": the execution of the workflow in-
stance failed.

Available for Status/Code "Cancelled" or "Failed".

This is the name of the workflow definition as
modeled in ION.

Infor ION Development Guide | 53

http://schema.infor.com

Starting a workflow from an application

Element

Property/NameValue

Property/NameValue/@name

Property/NameValue/@type

TreeProperty/TreeNode

TreeProperty/TreeNode/ID

TreeProperty/TreeNode/ParentID

TreeProperty/TreeNode/NodeName

TreeProperty/TreeNode/NodeProperty/NameVal-
ue

TreeProperty/TreeNode/NodeProperty/
NameValue/@name

Note

Values of the workflow input and output parame-
ters.

Must match the data type of the parameter.

When included in a ProcessWorkflow with action-
Code="Add", these are input parameters.

When included in an AcknowledgeWorkflow with
actionCode="Completed", these are output pa-
rameters.

The name of the parameter as defined in the
workflow model.

One of the pre-defined types that you can map
to the workflow parameter types.

These types are supported:

¢ IndicatorType

¢ NumericType

« IntegerNumericType
e StringType

« DateType

« DateTimeType

See the table below for an overview of mapping
to workflow parameter types.

TreeProperty contains data for a workflow struc-
ture.

In the first TreeNode, these attributes are used:

e |ID=1

« NodeName = the name of the structure as
used in workflow

» One or more NodeProperty elements with
fields from the root of the structure

The first node does not have a ParentlD.

The unique identifier for this tree node within the
document. It must only be unique within the doc-
ument.

The ID of the node that is the parent of the current
node within the tree.

Must be identical to the level name from the
workflow structure.

Values for the fields from the workflow structure
situated on the level corresponding to the current
node.

The name of the field as defined in the workflow
structure.

Infor ION Development Guide | 54

Starting a workflow from an application

Element

TreeProperty/TreeNode/NodeProperty/

NameValue/@type

Note

The type of the field as defined in the workflow

structure. These types are supported:

IndicatorType
DateType
NumericType
IntegerNumericType
StringType
DateTimeType

This table shows all available workflow parameter types and how these types are mapped to the
Property types in the Workflow BOD:

Workflow Parameter Type

Boolean

Code

Date

DateTime

Decimal

Hyperlink

Integer

String

Property Type
IndicatorType

StringType

DateType

DateTimeType

NumericType

StringType

IntegerNumericType

StringType

Notes

Represents a true or false val-
ue.

Possible values: true, false, 0,
1.

The value is expected to be part
of the Codes modeled in the
Workflow Modeler, but no valida-
tion is enforced.

The date part of a date/time
stamp.

The date part and time part of
a date/time stamp, separated
by "T" and ending with Z (is al-
ways UTC).

A numeric type with a floating
precision. The Decimal data
type in Workflow corresponds
to the double data type and is a
double-precision 64-bit IEEE
754 floating point.

Is displayed as a clickable link
in Infor Ming.le.

A numeric type that represents
a whole number.

A string value of up to 4000
characters in length.

Infor ION Development Guide | 55

Starting a workflow from an application

Sample workflow BODs

Sample ProcessWorkflow to start a workflow

<ProcessWorkflow xmlns="http://schema.infor.com/InforOAGIS/2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemaloca
tion="http://schema.infor.com/InforOAGIS/2 http://schema.infor.com/Trunk/In
forOAGIS/BODs/Developer/ProcessWorkflow.xsd"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" releaseID="11.1" version
ID="2.10.0">
<ApplicationArea>
<Sender>
<LogicalID>1lid://infor.test.appl</LogicalID>
<ComponentID>ComponentID0</ComponentID>
<TaskID>TaskID0</TaskID>
<AuthorizationID>AuthorizationID0</AuthorizationID>
</Sender>
<CreationDateTime>2013-10-20T13:20:00zZ</CreationDateTime>
<BODID>infor-nid:infor:::Sample NestedTree:1l?Workflow&verb=Pro
cess</BODID>
</BApplicationArea>
<DataArea>
<Process>
<TenantID>infor</TenantID>
<ActionCriteria>
<ActionExpression actionCode="Add"/>
</ActionCriteria>
</Process>
<Workflow>
<Status>
<Code>Initial</Code>
</Status>
<WorkflowDefinitionCode>SimpleDataEntryTest</WorkflowDefinitionCode>

<Property>

<!-- true, false, 1 or 0 -->

<NameValue name="aBoolean" type="IndicatorType">true</NameValue>

</Property>

<Property>

<NameValue name="aCode" type="StringType">Approved</NameValue>

</Property>

<Property>

<NameValue name="aDate" type="DateType">2012-12-10</NameValue>

</Property>

<Property>

<NameValue name="aDateTime" type="DateTimeType">2012-12-
10T10:00:00z</NameValue>

</Property>

<Property>

<NameValue name="aDecimal" type="NumericType">453.99</NameValue>

</Property>

Infor ION Development Guide | 56

Starting a workflow from an application

<Property>
<NameValue name="anInteger" type="IntegerNumericType">250</NameValue>

</Property>

<Property>

<NameValue name="aLink" type="StringType">http://www.inforx
treme.com</NameValue>

</Property>

<Property>

<NameValue name="aString" type="StringType">This is a test
string</NameValue>

</Property>

<TreeProperty>

<TreeNode>

<ID>1</ID>

<NodeName>Building</NodeName>

<NodeProperty>

<NameValue name="BuildingName" type="StringType">0ffice</NameValue>

</NodeProperty>

<NodeProperty>

<NameValue name="NumberOfFloors" type="IntegerNumericType">1</NameVal
ue>

</NodeProperty>

</TreeNode>

<TreeNode>

<ID>2</ID>

<ParentID>1</ParentID>

<NodeName>Floor</NodeName>

<NodeProperty>

<NameValue name="FloorName" type="StringType">Ground
Floor</NameValue>

</NodeProperty>

</TreeNode>

</TreeProperty>

</Workflow>

</DataArea>

</ProcessWorkflow>

Sample AcknowledgeWorkflow when the request was
accepted

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<AcknowledgeWorkflow releaseID="2"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemaloca
tion="http://schema.infor.com/InforOAGIS/2 http://schema.infor.com/2.5.0/In
forOAGIS/BODs/Developer/AcknowledgeWorkflow.xsd" xmlns="http://schema.in
for.com/InforOAGIS/2">

<ApplicationArea>

<Sender>

Infor ION Development Guide | 57

Starting a workflow from an application

<LogicalID>infor.engine.workflow</LogicalID>
<ComponentID>ION Workflow Engine</ComponentID>
</Sender>
<CreationDateTime>2013-10-24T08:18:18.380z</CreationDateTime>
</BApplicationArea>
<DataArea>
<Acknowledge>
<TenantID>Infor</TenantID>
<OriginalApplicationArea>
<Sender>
<LogicalID>1lid://infor.test.appl</LogicalID>
<ComponentID>ComponentID0</ComponentID>
<TaskID>TaskID0</TaskID>
<AuthorizationID>AuthorizationIDO</AuthorizationID>
</Sender>
<CreationDateTime>2013-10-20T13:20:00%</CreationDateTime>
<BODID>infor-nid:infor:::Sample NestedTree:1?Workflow&verb=Pro
cess</BODID>
</OriginalBApplicationArea>
<ResponseCriteria>
<ResponseExpression actionCode="Accepted"/>
</ResponseCriteria>
</Acknowledge>
<Workflow>
<DocumentID>
<ID>20</1D>
</DocumentID>
<Status>
<Code>Initial</Code>
</Status>
<WorkflowDefinitionCode>SimpleDataEntryTest</WorkflowDefinition
Code>
</Workflow>
</DataArea>
</AcknowledgeWorkflow>

Infor ION Development Guide | 58

Creating alerts, tasks, or notifications from an application

Chapter 11: Creating alerts, tasks, or notifications from
an application

The Pulse engine is the component that handles alerts, tasks, and notifications as generated by Event
Management and Workflow.

But any application that is connected to ION can create alerts, tasks, and naotifications in Pulse directly.
This is done by sending and receiving Pulse BODs such as. Pulsellert, PulseTask, PulseNoti
fication.

This section explains how to create and manage alerts, tasks, and notifications through Pulse BODs.
From an application you can perform these actions:

» Create alerts, tasks, or notifications.
* Receive status updates for an alert, task, or notification.
» Cancel a previously created alert, task, or notification.

Creating alerts, tasks, and notifications is not limited to applications that can send or receive BODs.
For example, you can use the corresponding type of connection point to create alerts through a IMS
message queue or by reading from a database.

Creating alerts, tasks, or notifications

Use PulseTask if the user is expected to perform a defined task. Use PulseAlert to notify a user
of an exception. The user can decide whether to take action and then close the alert. Use PulseNoti
fication to send a message ‘for your information’ to one or more users.

The diagram shows how tasks, alerts and notifications are created by sending Pulse BODs. In the
diagram a task (PulseTask) is shown, but the process is the same for notifications (PulseNotifi
cation) and alerts (PulseAlert).

Infor ION Development Guide | 59

Creating alerts, tasks, or notifications from an application

ION Desk

Infor Ming.le user administrator

ProcessPulseTask

AcknowledgePulseT ask
Application t Pulse

By publishing a ProcessPulseTask BOD you can create a new task in Pulse. The task is created in
Pulse and an AcknowledgePulseTask is sentin reply.

Creating tasks from an application

To create tasks from an application:

1

Update your application so it can send ProcessPulseTask and to handle incoming Acknowl
edgePulseTask BODs. The ProcessPulseTask BOD must have action code ‘Add’ to create
a new task.

Ensure your application is connected to ION. In the connection point, select ProcessPulseTask
as a document to send.

Your application connection point must be used in at least one active document flow. If this is not
the case, you can create a specific document flow containing an activity for your application and
activate that flow.

In IFS, configure users, distribution groups, and contacts for people that must receive alerts. For
users, ensure the 'Person’ is filled with the value that is sent by the application as the person ID
of a system user. For contacts, ensure the ‘Contact ID’ is filled with the same value that is sent by
the application as the person ID of a non-system user. For distribution groups, the application must
send the distribution group name as defined in IFS.

For PulseAlert and PulseNotification BODSs, the procedure is the same.

Infor ION Development Guide | 60

Creating alerts, tasks, or notifications from an application

Important notes

Regarding the document flow, be aware that Pulse is an 'engine' inside ION. It is not a normal application
for which you can create a connection point. Therefore, the configuration differs from a normal
configuration. Normally, a document flow is created from A to B where you select the documents to be
sent. This selection can be a subset of the documents sent by connection point A and received by
connection point B.

If an application connection point that can publish ProcessPulseAlert, ProcessPulseTask, Of
ProcessPulseNotification,isusedinan active document flow, these BODs are delivered directly
to Pulse. Similarly, if the connection point is configured to receive SyncPulseAlert, SyncPulseTask,
or SyncPulseNotification, it receives those BODs without selecting them in a document flow.

Therefore, you cannot use mapping, content-based routing, or filtering in a document flow for
PulseAlert, PulseTask, and PulseNotification.

For details on how to define connection points and document flows, see the Infor ION Desk User
Guide.

Creating an alert

When creating an alert, the action code (ProcessPulselAlert/DataArea/Process/ActionCri
teria/ ActionExpression/QactionCode) must be "Add".

This table shows the elements you can use in the noun instance, ProcessPulseAl
ert/DataArea/PulselAlert:

Element Note

Description Required
Note Optional
AlertDetail and child elements Optional

DistributionPersonorDistributionGro Define atleastone DistributionPerson or
up DistributionGroup.

ForaDistributionPerson, do not specify the
Distribution/ID, because itis generated by
Pulse.

Do not use other elements, such as DocumentID, CreationDateTime, and Status, when creating an
alert. These elements are determined by the Pulse engine.

This table shows the elements that are included in the resulting AcknowledgePulseAlert BOD:

Element Note

DocumentID/ID Available if actionCode = "Accepted".

If the alert cannot be created successfully, the a
ctionCode is "Rejected".

Infor ION Development Guide | 61

Creating alerts, tasks, or notifications from an application

Note: We recommend that you include a unique value for the BODID. You can use that to process
the AcknowledgePulseAlert because the BODID is available again in the original application area.

If the alert could not be created, you receive an AcknowledgePulseAlert BOD with action code
'Rejected'.

If the AcknowledgePulseAlert BOD can not be delivered, a Confirm BOD is generated.

Creating a task

When creating a task, the action code (ProcessPulseTask/DataArea/Process/ActionCriteria/
ActionExpression/RactionCode) must be "Add".

This table shows the elements you can use in the noun instance (ProcessPulse
Task/DataArea/PulseTask):

Element Note

Priority Optional, default is MEDIUM.
Description Required

Note Optional

Parameter and child elements Optional

DistributionPersonorDistributionGro Define atleastone DistributionPerson or
up DistributionGroup.

ForaDistributionPerson, do not specify the
Distribution/ID, because itis generated by
Pulse.

Do not use other elements, such as DocumentID, CreationDateTime, and Status, when creating a task.
These elements are determined by the Pulse engine.

This table shows the elements that are included in the resulting AcknowledgePulseTask BOD:

Element Note

DocumentID/ID Available if actionCode = "Accepted".

If the task cannot be created successfully, the a
ctionCode is "Rejected".

Note: We recommend that you include a unique value for the BODID. You can use that to process
the AcknowledgePulseTask because the BODID is available again in the original application area.

If the task could not be created, you receive an AcknowledgePulseTask BOD with action code
'Rejected'.

If the AcknowledgePulseTask BOD can not be delivered, a Confirm BOD is generated.

Infor ION Development Guide | 62

Creating alerts, tasks, or notifications from an application

Creating a notification

When creating a notification, the action code (ProcessPulseNotification/DataArea/ Pro
cess/ActionCriteria/ActionExpression/@actionCode) must be "Add".

This table shows the elements you can use in the noun instance (ProcessPulseNotifica
tion/DataArea/PulseNotification):

Element Note
Description Required
Parameter and child elements Optional

DistributionPersonor DistributionGro Define atleastone DistributionPerson or
up DistributionGroup.

ForaDistributionPerson, do not specify the
Distribution/ID, because itis generated by
Pulse.

Do not use other elements, such as DocumentID, CreationDateTime, and Status, when creating
a notification. These elements are determined by the Pulse engine.

This table shows the elements that are included in the resulting AcknowledgePulseNotification
BOD:

Element Note

DocumentID/ID Available if actionCode = "Accepted”.

If the notification cannot be created successfully,
the actionCode is "Rejected".

Note: We recommend that you include a unique value for the BODID. You can use that to process
the AcknowledgePulseNotification because the BODID is available again in the original
application area.

If the notification could not be created, you receive an AcknowledgePulseNotification BOD with
action code 'Rejected'.

If the AcknowledgePulseNotification BOD can not be delivered, a Confirm BOD is generated.

Receilving status updates on alerts, tasks, or
notifications

The Pulse engine sends Sync BODs for PulseAlert, PulseTask and PulseNotification to
inform others about status changes in alerts, tasks and notifications.

This diagram shows a task (PulseTask), but the process is the same for notifications and alerts.

Infor ION Development Guide | 63

Creating alerts, tasks, or notifications from an application

|ON Desk

Infor Ming.le user administrator

ProcessPulseTask

AcknowledgePulseT ask

Application Pulse
SyncPulseTask

SyncPulseTask

"l

Pulse sends a SsyncPulseTask when a new task is created and when the status is changed. For
example, if a user picks up the task and sets it to done, a SyncPulseTask is sent. The application
can handle this BOD to be informed about the new status. If a task is canceled through ION Desk by
an administrator, a SyncPulseTask is also sent.

A Sync BOD is sent in these situations:

* A new task, alert or notification is created.

 Anitem is assigned, reassigned or unassigned.

* Anitem is redistributed.

» The status of an item is changed to Done or Canceled.

Pulse may not send Sync BODs for all changes to an item, such as changing a parameter value, adding
a note or adding an attachment.

It is not required to handle Sync BODs when you send out Process BODs. The Acknowledge BOD
tells you whether the Process request was handled successfully. When sending a ProcessPulseNo
tification, thatis probably all you want to know. When creating a task, you want to know whether
the task was completed and what was the outcome of the task. For example, in case of an approval
task for a requisition you want to know whether the user approved or rejected the requisition. In that
case you can receive the SyncPulseTask BODs to be informed of the task status.

Infor ION Development Guide | 64

Creating alerts, tasks, or notifications from an application

It can happen that an Acknowledge Pulse BOD or a Sync Pulse BOD could be delivered to the
subscribing application. In that case, a Confirm BOD is generated. The Confirm BOD contains the
original Acknowledge or Sync document, and can be re-submitted later from the ION Desk Ul

Receiving status updates

To receive status updates for tasks:

1 Update your application so it can handle incoming SyncPulseTask BODs. The
SyncPulseAlert/DataArea/PulseTask/Source element contains the originator of the alert, so you
can use this element to ignore BODs that are not relevant for your application.

2 Ensure your application is connected to ION. In the connection point, select SyncPulseTask as a
document to receive.

3 Your application connection point must be used in at least one active document flow. If this is not
the case, you can create a specific document flow containing an activity for your application and
activate that flow.

For PulseAlert and PulseNotification BODs, the procedure is the same.

The SyncPulseAlert, SyncPulseTask, and SyncPulseNotification BODs include all elements that are
relevant for the alert, task, or notification.

For the available elements, see Pulse BOD details on page 69.

Receiving information about deleted activities

In ION Desk you can delete archived monitors, archived activation policies, and archived workflows.
When you delete these, the activities they have generated are also deleted. If an application has
subscribed to receive status updates from Sync Pulse BODs, it also receives Sync Pulse BODs about
deleted activities.

The messages about deleted activities have these characteristics:

« Depending on the type of activities being deleted, a SyncPulseAlert, SyncPulseTask, or a
SyncPulseNoatification is sent.

» These BODs have actionCode="Delete”.

« These BODs contain a list of IDs that represent a batch of activities being deleted simultaneously.

This code shows an example of a message that is sent for a set of deleted alerts:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<SyncPulseAlert releaseID="10.1.3"
xmlns="http://schema.infor.com/InforOAGIS/2">
<ApplicationArea>
<Sender>
<LogicalID>infor.engine.pulse</LogicalID>
<ConfirmationCode>OnError</ConfirmationCode>
</Sender>

Infor ION Development Guide | 65

Creating alerts, tasks, or notifications from an application

<CreationDateTime>2018-01-18T15:16:50.39772</CreationDateTime>
</BpplicationArea>
<DataArea>
<Sync>
<TenantID>INFOR</TenantID>
<ActionCriteria>
<ActionExpression actionCode="Delete"/>
</ActionCriteria>
</Sync>
<PulseAlert>
<DocumentID>
<ID>90</ID>
</DocumentID>
</PulseAlert>
<PulseAlert>
<DocumentID>
<ID>91</ID>
</DocumentID>
</PulseAlert>
<PulseAlert>
<DocumentID>
<ID>92</ID>
</DocumentID>
</PulseAlert>
</DataArea>
</SyncPulseAlert>

Canceling alerts, tasks, or notifications

In some cases, you must cancel an alert, task, or notification before the user handled it. For example,
a requisition approval task is created, but now the requestor cancels the requisition. In this case you
must also cancel the task in Pulse.

This diagram shows a task (PulseTask), but the process is the same for notifications and alerts.

Infor ION Development Guide | 66

Creating alerts, tasks, or notifications from an application

ION Desk

Infor Ming.le user administrator

ProcessPulseTask

k. 4

AcknowledgePulseT ask

F

’ SyncPulseTask
Application) Pulse
ProcessPulseTask
({to cancel the task)

b 4

SyncPulseTask

F 3

If you created a task by sending a ProcessPulseTask with action code ‘Add’, you receive an
AcknowledgePulseTask which contains the ID of the task. You can use this ID to send a new
ProcessPulseTask request to cancel the task.

Receiving status updates

To receive status updates for tasks:

1 Update your application so it can handle incoming SyncPulseTask BODs. The
SyncPulseAlert/DataArea/PulseTask/Source element contains the originator of the alert, so you
can use this element to ignore BODs that are not relevant for your application.

2 Ensure your application is connected to ION. In the connection point, select SyncPulseTask as a
document to receive.

3 Your application connection point must be used in at least one active document flow. If this is not
the case, you can create a specific document flow containing an activity for your application and
activate that flow.

For PulseAlert and PulseNotification BODs, the procedure is the same.

The SyncPulseAlert, SyncPulseTask, and SyncPulseNoatification BODs include all elements that are
relevant for the alert, task, or notification.

For the available elements, see Pulse BOD details on page 69.

Infor ION Development Guide | 67

Creating alerts, tasks, or notifications from an application

Canceling an alert

When canceling an alert, the action code (ProcessPulseAlert/DataArea/Process/ActionCriteria/
ActionExpression/@actionCode) must be "Change".

This table shows the elements you must use in the noun instance
(ProcessPulseAlert/DataArea/PulseAlert):

Element Note

DocumentID/ID Use the DocumentID/ID as provided in the Acknowledge BOD when
the item was created.

Status/Code Use value 'CANCELLED..

When processing the cancel request in the Pulse engine, an Acknowledge BOD is sent in reply. If the
item was canceled successfully, the actionCode of the BOD is "Accepted". If the item could not be
canceled, the actionCode is "Rejected".

You can only cancel an alert when:

» The alertis open. If the user completed the alert, you can no longer cancel it.

e The alertis created by a ProcessPulseAlert BOD. If the alert is created by a Monitor you cannot
cancel the alert using a ProcessPulseAlert BOD.

Canceling a task

When canceling a task, the action code (ProcessPulseTask/DataArea/Process/ActionCriteria/
ActionExpression/@actionCode) must be "Change".

This table shows the elements you must use in the noun instance
(ProcessPulsetask/DataArea/PulseTask):

Element Note

DocumentID/ID Use the DocumentID/ID as provided in the Ac-
knowledge BOD when the item was created.

Status/Code Use value 'CANCELLED".

When processing the cancel request in the Pulse engine, an Acknowledge BOD is sent in reply. If the
item was canceled successfully, the actionCode of the BOD is "Accepted". If the item could not be
canceled, the actionCode is "Rejected".

You can only cancel a task when:

« The task is open. If the user completed the task, you can no longer cancel it.

* The task is created by a ProcessPulseTask BOD. If the task is created by a Workflow you cannot
cancel the task using a ProcessPulseTask BOD.

Infor ION Development Guide | 68

Creating alerts, tasks, or notifications from an application

Canceling a notification

When canceling a notification, the action code (ProcessPulseNoatification/DataArea/Process/
ActionCriteria/ActionExpression/@actionCode) must be "Change".

This table shows the elements you must use in the noun instance
(ProcessPulseNotification/DataArea/PulseNotification):

Element Note

DocumentID/ID Use the DocumentID/ID as provided in the Ac-
knowledge BOD when the item was created.

Status/Code Use value 'CANCELLED'.

When processing the cancel request in the Pulse engine, an Acknowledge BOD is sent in reply. If the
item was canceled successfully, the actionCode of the BOD is "Accepted". If the item could not be
canceled, the actionCode is "Rejected".

You can only cancel a notification when:

» The notification is open. If the user completed the task, you can no longer cancel it.
« The notification is created by a ProcessPulseNotification BOD. If the notification is created by a
Workflow you cannot cancel the notification using a ProcessPulseNotification BOD.

Pulse BOD detalls

The definition of ProcessPulseAlert, AcknowledgePulseAlert, and SyncPulseAlert is available on this
site:

http://schema.infor.com

This section contains an explanation on the elements that exist in these documents.

PulseAlert

This table shows the elements in PulseAlert:

Element Note

DocumentID/ID Unique identification of the alert.
CreationDateTime Date when the alert was created in Pulse.
LastModificationDateTime Date when the alert was last modified.

Infor ION Development Guide | 69

http://schema.infor.com

Creating alerts, tasks, or notifications from an application

Element Note

Status/Code Status of the alert. Values are:

* NEW - The initial status for a new item.

* ASSIGNED - Assigned to a specific user.

« UNASSIGNED - No longer assigned to a
specific user.

« DONE - Completed.

¢ CANCELLED - canceled by an administrator
(through ION Desk) or by the application
(through a ProcessPulseAlert BOD).

IsEscalated This indicator has value true if an alert is escalat-
ed and false otherwise. This element is only
supported in Sync messages.

EscalationLevel The number of levels in the organizational hierar-
chy to which the alert is escalated. If the alert is
not escalated the value is 0. Otherwise the Esca-
lationLevel is greater than O.

DueDateTime Date and time when the alert is due. This element
is shown only if a due date was configured in the
monitor that created this alert. This element is
supported only in the Sync messages.

Description The description that is displayed to the end user
as the summary of the alert. You can use hash
tags to make searching easier. For example:

Late shipment for #sales order 25
of customer #acme

To define a category, use ## at the end of the
message.

To include values from the alert details, use
square brackets around the parameter labels.

To use the actual characters for square brackets,
use an escape character: \ [or \]
Description/@languagelD The language code of the Description field.

For details, see the notes in the "Supported fea-
tures" section.

Note Notes that are added by people who handled the
alert. Notes can be added, but cannot be modified
or removed.

Note/@userID The ID (personld) of the person who added the
note.

Infor ION Development Guide | 70

Creating alerts, tasks, or notifications from an application

Element Note

Note/@author Full name of the person who added the note.

This attribute is required when a Note is added
through a ProcessPulseAlert BOD.” / “Pro-
cessPulseTask BOD.” / “ProcessPulseNotification

BOD.
Note/@entryDateTime The date/time at which the note was created.
Note/@notelD Identification of the note within the alert.
Source/Type BOD: the alert was created by sending a Pro-

cessPulseAlert BOD.

MONITOR: the alert was created by an event
monitor.

Source/Name If Type=BOD: the logical ID of the sender of the
ProcessPulseAlert BOD. For example, 1id://
infor.erp.myerp

If Type is MONITOR: the name of the monitor
that created the alert. For example, MyMonitor.

AlertDetail Details of the alert that are displayed to the user.
Each AlertDetail group contains document refer-
ences or trees. For example, an AlertDetail can
contain one or more document references fol-
lowed by a tree containing data for an order and
its order lines.

AlertDetail/@sequence The sequence number of the AlertDetail group.
This is used for ordering the alert details when
displaying them to a user.

Infor ION Development Guide | 71

Creating alerts, tasks, or notifications from an application

Element

AlertDetail/PulseDocumentReference

AlertDetail/PulseDocumentReference/@sequence

AlertDetail/TreeNode

AlertDetail/TreeNode/@sequence

AlertDetail/TreeNode/ID

AlertDetail/TreeNode/ParentID

AlertDetail/TreeNode/NodeName

Note

Reference to another business document. The
format is the same as the standard DocumentRe-
ference, but additionally it has a sequence at-
tribute.

For example:

<PulseDocumentReference>
type="SalesOrder" se
quence="1">

<DocumentID>
<ID accountingEntity="infor"
location="bvld"
lid="1id://infor.1ln.440">
ORD0015236</ID>
<RevisionID>123</RevisionID>
</DocumentID>
</PulseDocumentReference>

The RevisionID tag is only used if the document
referred from this alert contains a RevisionlID.

Sequence number to indicate the sequence in
which the document references must be dis-
played to the user when showing the alert details.

Node in the data tree. Alert data is a tree structure
to enable multi-level data objects, such as an or-
der header having order lines.

If the tree node is a child of another node, the
sequence attribute defines the sequence of the
child nodes relative to their parent.

Identification for this tree node within the alert.

Omitted if the tree node is the top-level node in
the tree. Otherwise it contains the ID of the parent
node. The parent node must exist within the same
AlertDetail. In an AlertDetail, all TreeNodes ex-
cept one will have a ParentID.

The name of the node. This name is displayed
to the user.

For example: Sales Order.

Infor ION Development Guide | 72

Creating alerts, tasks, or notifications from an application

Element

AlertDetail/TreeNode/TreeNodeParameter

AlertDetail/TreeNode/TreeNodeParameter/Name

AlertDetail/TreeNode/TreeNodeParameter/Value

AlertDetail/TreeNode/TreeNodeParame-
ter/DataType

Note

A parameter in a tree node, which contains a
data element that can be displayed to the user
who handles the alert. Alert parameters are al-
ways read-only.

For example:

<TreeNodeParameter sequence="1">

<Name>OrderNumber</Name>

<Value>12345</Value>

<DataType

listID="Pulse

Datatypes">STRING

</DataType>

<Label>Order Number</Label>
</TreeNodeParameter>

The name that identifies the parameter within the
TreeNode. This element is required for each pa-
rameter.

The (serialized) value of the parameter. The for-
matting depends on the DataType and is the
same as the formatting that is normally used in
BOD data elements.

The data type of the parameter. This element is

required for each parameter.

You can use these data types:

e STRING - a string value that is up to 4000
characters in length

¢« INTEGER - a numeric type that represents
a whole number

« DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

« BOOLEAN - represents a true or false value

» DATETIME - the date part and time part of
a date/time stamp separated by "T" and
ending with Z (is always UTC)

e TIME - the time part of a date/time stamp

« DATE - the date part of a date/time stamp

« DURATION - time interval, starting with P
followed by nM (minutes) or nH (hours) or
nD (days). For example, P2D3H.

Infor ION Development Guide | 73

Creating alerts, tasks, or notifications from an application

Element

AlertDetail/TreeNode/TreeNodeParameter/Label

AssignedPerson
AssignedPerson/PersonReference

AssignedPerson/PersonReference/IDs/ID

AssignedPerson/PersonReference/Name

AssignedPerson/PersonReference/Syste-
muUserindicator

DistributionPerson

DistributionPerson/ID

DistributionPerson/PersonReference

DistributionPerson/PersonReference/IDs/ID

DistributionPerson/PersonReference/Name

DistributionPerson/PersonReference/Syste-
mUserindicator

DistributionGroup

DistributionGroup/Name

DistributionGroup/Description

Note

The label of the parameter that is used when
displaying the parameter to a user. This element
is required for each parameter.

The user to which the alert is currently assigned.
Reference to a person.

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive).

Name of the person.

Value is true if the person is a User in IFS.
Value is false if the person is a Contact in IFS.

Person in the distribution list for the alert. If the
alert is not assigned to a person, one of these
persons can pick it up.

Identification of the distribution person within the
alert

Reference to a person.

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive). This element is required for each distribution
person.

Name of the person.

Value is true if the person is a User in IFS.
Value is false if the person is a Contact in IFS.

This element is required for each distribution
person.

Specify one or more distribution groups to which
the alert must be distributed. This element can
be used in addition to the DistributionPerson ele-
ment, or instead of the DistributionPerson ele-
ment.

Identifier of the distribution group as defined in
Infor Ming.le User Management. The alert is dis-
tributed to all users that are members of this
group at the time the alert is created.

Description of the distribution group. This element
is optional and is not used to determine the distri-
bution list.

Infor ION Development Guide | 74

Creating alerts, tasks, or notifications from an application

Element

DistributionGroup/Description/@languagelD

Note

Describe the language code of the description
element. This attribute is optional and is not used
for the distribution functionality.

Note: The DistributionGroup element is supported only in the ProcessPulseAlert BOD. A SyncPulseAlert
BOD can be sent after the creation of the alert. In that case, the distribution list of the alert is described
using a DistributionPerson element for each user from the distribution group.

PulseTask
This table shows the elements in PulseTask:

Element

DocumentID/ID
CreationDateTime
LastModificationDateTime

Status/Code

IsEscalated

EscalationLevel

Priority

DueDateTime

Note

Unique identification of the task.

Date when the task was created in Pulse.
Date when the task was last modified.

Status of the task. Values are;

* NEW - The initial status for a new item.

« ASSIGNED - Assigned to a specific user.

« UNASSIGNED - No longer assigned to a
specific user.

¢« DONE - Completed.

¢ CANCELLED - canceled by an administrator
(through ION Desk) or by the application
(through a ProcessPulseTask BOD).

This indicator has value true if a task is escalated
and false otherwise. This element is only support-
ed in Sync messages.

The number of levels in the organizational hierar-
chy to which the alert is escalated. If the task is
not escalated the value is 0. Otherwise the Esca-
lationLevel is greater than 0.

The priority of the task. Values are:

* HIGH
e MEDIUM
e LOW

Date and time when the task is due. This element
is shown only if a due date was configured in the
workflow task properties. This element is support-
ed only in the Sync messages.

Infor ION Development Guide | 75

Creating alerts, tasks, or notifications from an application

Element

Description

Description/@languagelD

Note

Note/@userID

Note/@author

Note/@entryDateTime
Note/@notelD
Note/@type

Source/Type

Note

The description that is displayed to the end user
as the summary of the task. You can use hash
tags to make searching easier. For example:

Approve frequisition 25

To define a category, use ## at the end of the
message.

To include values from the alert details, use
square brackets around the parameter labels.

To use the actual characters for square brackets,
use an escape character: \ [or \]

The language code of the Description field.

For details, see the notes in the "Supported fea-
tures" section.

Notes that are added by people who handled the
alert. Notes can be added, but cannot be modified
or removed.

The ID (personld) of the person who added the
note.

Full name of the person who added the note.

This attribute is required when a Note is added
through a ProcessPulseAlert BOD.” / “Pro-
cessPulseTask BOD.” / “ProcessPulseNatification
BOD.

The date/time at which the note was created.
Identification of the note within the task.
If this attribute is missing or empty ", this note is

a current note of this Task.

If the @type attribute is filled with a string other
than ", this note is a propagated Note, which was
specified in a previous Task of the same work-
flow.

BOD: the task was created by sending a Pro-
cessPulseTask BOD.

WORKFLOW: the task was created by a work-
flow.

Infor ION Development Guide | 76

Creating alerts, tasks, or notifications from an application

Element

Source/Name

Parameter

Parameter/@sequence

Parameter/Sequence

Parameter/Name

Parameter/Value

Note

If Type=BOD: the logical ID of the sender of the
ProcessPulseTask BOD. For example, 1id://
infor.erp.myerp

If Type is WORKFLOW: the name of the workflow
definition that created the task. For example, My
Workflow.

Data of the task that is displayed to the user and
optionally can be updated by the user.

For example:

<Parameter sequence="1">
<Name>OrderNumber</Name>
<Value>12345</Value>
<DataType
1listID="Pulse
Datatypes">STRING</DataType>
<Label>Order Number</Label>
<ReadOnlyIndicator>true</ReadOn
lyIndicator>
</Parameter>

The sequence number of the parameter. This is
used for ordering the parameters when displaying
them to a user. You are only allowed to use this
attribute if there are no elements of type
TreeParameter in the document.

You must specify this element in combination
with TreeParameter/Sequence. This element is
used to determine the order in which Parameters
and TreeParameters are displayed to the user.

The name that identifies the parameter within the
task. This element is required for each parameter.

The (serialized) value of the parameter. The for-
matting depends on the DataType and is the
same as the formatting that is normally used in
BOD data elements.

Infor ION Development Guide | 77

Creating alerts, tasks, or notifications from an application

Element

Parameter/DataType

Parameter/Label

Parameter/Label /@languagelD

Parameter/ReadyOnlyIndicator

Parameter/Restriction

TreeParameter

Note

The data type of the parameter. This element is
required for each parameter.

You can use these data types:

e STRING - a string value that is up to 4000
characters in length

¢ INTEGER - a numeric type that represents
a whole number

« DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

< BOOLEAN - represents a true or false value

« DATETIME - the date part and time part of
a date/time stamp separated by "T" and
ending with Z (is always UTC)

¢ TIME - the time part of a date/time stamp

« DATE - the date part of a date/time stamp

The label of the parameter that is used when
displaying the parameter to a user. This element
is required for each parameter.

The language code of the Label field.

For details, see the notes in the "Supported fea-
tures" section.

Indicates whether the parameter is read-only:

* |Ifthe value is true, the user is not allowed
to change the value.

« Ifthe value is false, the user can change
the value when handling the item.

This element is required for each parameter.

Restriction to the data type.

This element can contain the name of a code as
defined in ION Desk. The values that the user
can specify are then restricted to the specified
code.

The TreeParameter consists of a TreeDefinition
and TreeNodes specified after the TreeDefinition.
The TreeDefinition defines a complex data
structure. The TreeNodes define the data value
for the structure. The TreeDefinition and the
TreeNodes must be consistent.

Infor ION Development Guide | 78

Creating alerts, tasks, or notifications from an application

Element

TreeParameter/Sequence

TreeParameter/TreeDefinition

TreeParameter/TreeDefinition/TreeNode

TreeParameter/TreeDefinition/TreeNode/Se-
guence

TreeParameter/TreeDefinition/TreeNode/ID

TreeParameter/TreeDefinition/TreeNode/ParentID

TreeParameter/TreeDefinition/TreeNode/Node-
Name

TreeParameter/TreeDefinition/TreeNode/Label

TreeParameter/TreeDefinition/TreeNode/Label
/@languagelD

TreeParameter/TreeDefinition/TreeNode
[TreeNodeParameter

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Sequence

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Name

Note

Indicates the sorting sequence in which TreePa-
rameters and Parameters must be displayed to

the user in the task. If one Sequence is defined,
all Parameters must specify a Sequence element.

Definition for the data structure contained in the
TreeParameter. Definition includes several unique
TreeNodes with their ID, ParentlD, NodeName,
and TreeNodeParameters.

A node in a tree using a parent relationship and
containing the definition of the properties required
for the node.

Indicates the sequence of the node within the
TreeParameter. You must specify the Sequence
for all TreeNodes if this element is specified for
the root TreeNode. The ordering of the TreeN-
odes within the structure is based on the specified
Sequence. If the Sequence is not specified for
the root TreeNode, the structure is sorted based
on the xml.

The unique identifier for this tree node within this
definition of a TreeParameter.

The ID of the node that is the parent of this node
within the tree. The root TreeNode does not have
a ParentID.

This is the unique identification of a tree node.

The label of the parameter that is used when
showing the parameter to a user. You must
specify at least one label. You can specify several
labels, each with a different languagelD for
translated labels.

The language code of the Label field. For detalils,
see notes from Supported Features.

The TreeNodeParameter defines a property
within a TreeNode level. TreeNodeParameters
are optional. Values for these properties are
specified in the TreeNodes that follow the
TreeDefinition.

Indicates the sequence of the TreeNodeParame-
ter within the TreeNode.

The name of the TreeNodeParameter is used to
identify this property in the tree node instances
to specify its value.

Infor ION Development Guide | 79

Creating alerts, tasks, or notifications from an application

Element

TreeParameter/TreeDefinition/TreeNode/TreeN-
odeParameter/DataType

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label/@languagelD

TreeParameter/TreeNode

TreeParameter/TreeNode/ID

TreeParameter/TreeNode/ParentID

TreeParameter/TreeNode/NodeName

TreeParameter/TreeNode/TreeNodeParameter

TreeParameter/TreeNode/TreeNodeParame-
ter/Name

TreeParameter/TreeNode/TreeNodeParame-
ter/Value

Note

The data type of the associated value. You can
use these data types:

¢ STRING - a string value that is up to 4000
characters in length

 INTEGER - a numeric type that represents
a whole number

« DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

« BOOLEAN - represents a true or false value

« DATETIME - the date part and time part of
a date/time stamp separated by "T" and
ending with Z (is always UTC)

e TIME - the time part of a date/time stamp

» DATE - the date part of a date/time stamp

The label of the node that is used when displaying
it to a user. You must specify at least one label.
You can specify several labels, each with a differ-
ent languagelD for translated labels.

The language code of the Label field. For detalils,
see notes from Supported Features.

A node in a tree using a parent relationship and
containing properties required for the node and
their values.

The unique identifier for this tree node within this
TreeParameter.

The ID of the node that is the parent of this node
within the tree definition.

The unique identification of a tree node. This
name must match a node name from the
TreeDefinition. Several TreeNode instances with
the same NodeName can exist.

List of properties for this TreeNode.

The property name that must match with a prop-
erty defined for this TreeNode in the TreeDefini-
tion.

The value for this tree node property. The value
must be consistent with the data type specified
in the tree definition.

Infor ION Development Guide | 80

Creating alerts, tasks, or notifications from an application

Element Note

ActionParameter Parameter that holds the actions that a user can
do when closing the task.
For example:

<ActionParameter>
<Name>ApprovalResult</Name>
<Value>Rejected</Value>
<Action sequence="1">
<Value>Approved</Value>
<Label>Approve</Label>
</Action>
<Action sequence="2">
<Value>Rejected</Value>
<Label>Reject</Label>
</Action>
</ActionParameter>

An action parameter must have at least one ac-
tion.

ActionParameter/Name The name that identifies the action parameter
within the task. This element is required for each
action parameter.

ActionParameter/Value The (serialized) value of the action parameter.

ActionParameter/Action/Value The value that is assigned to the action parameter
when the user selects this action.

ActionParameter/Action/Label The label used when displaying the action button
to the user. This element is required for each
action parameter. Even though it is technically
possible to use a string of maximum length of
255 characters, we recommend that you use
short labels that are suitable for action buttons.

ActionParameter/Action/Label /@languagelD The language code of the Label field. For detalils,
see notes from Supported Features.

AssignedPerson The user to which the notification is currently as-
signed. A notification is initially distributed to all
users having a DistributionPerson defined in the

notification.
AssignedPerson/PersonReference Reference to a person.
AssignedPerson/PersonReference/IDs/ID Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive).
AssignedPerson/PersonReference/Name Name of the person.
AssignedPerson/PersonReference/Syste- Value is true if the person is a User in IFS.

mUserindicator Value is false if the person is a Contact in IFS.

Infor ION Development Guide | 81

Creating alerts, tasks, or notifications from an application

Element

DistributionPerson

DistributionPerson/ID

DistributionPerson/PersonReference

DistributionPerson/PersonReference/IDs/ID

DistributionPerson/PersonReference/Name

DistributionPerson/PersonReference/Syste-
muUserindicator

DistributionGroup

DistributionGroup/Name

DistributionGroup/Description

DistributionGroup/Description/@languagelD

Note

Person in the distribution list for the task. The
task is distributed to all users for which a Distribu-
tionPerson is included.

Identification of the distribution person within the
distribution list of the task.

Reference to a person.

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive). This element is required for each distribution
person.

Name of the person.

Value is true if the person is a User in IFS.
Value is false if the person is a Contact in IFS.

This element is required for each distribution
person.

For PulseTask, the value must always be true.

Specify one or more distribution groups to which
the task must be distributed. This element can
be used in addition to the DistributionPerson ele-
ment, or instead of the DistributionPerson ele-
ment.

Identifier of the distribution group as defined in
Infor Ming.le User Management. The task is dis-
tributed to all users that are members of this
group at the time the task is created.

Description of the distribution group. This element
is optional and is not used to determine the distri-
bution list.

Describe the language code of the description
element. This attribute is optional and is not used
for the distribution functionality.

Note: The DistributionGroup element is supported only in the ProcessPulseTask BOD. A SyncPulseTask
BOD can be sent after the creation of the task. In that case, the distribution list of the task is described
using a DistributionPerson element for each user from the distribution group.

PulseNotification

This table shows the elements in PulseNotification:

Infor ION Development Guide | 82

Creating alerts, tasks, or notifications from an application

Element

DocumentID/ID
CreationDateTime
LastModificationDateTime
Status/Code

Description

Description/@languagelD

Note

Note/@userlD

Note/@author

Note/@entryDateTime
Note/@notelD

Note

Unique identification of the notification.

Date when the notification was created in Pulse.
Date when the notification was last modified.

Status of the notification. Values are:

* ASSIGNED - The initial status for a new item.
The notification is assigned to each of the
distribution persons.

« DONE - Completed.

¢ CANCELLED - canceled by an administrator
(through ION Desk) or by the application
(through a ProcessPulseNotification BOD).

The description that is displayed to the end user
as the summary of the notification. You can use
hash tags to make searching easier. For example:

#Requisition 25 is approved

To define a category, use ## at the end of the
message.

To include values from the alert details, use
square brackets around the parameter labels.

To use the actual characters for square brackets,
use an escape character: \ [or \]

The language code of the Description field.

For details, see the notes in the "Supported fea-
tures" section.

Propagated notes that are added by users who
worked on Tasks from the same workflow. You
cannot add or remove notes from a Notification.
This field is only applicable for Sync.PulseNotifi-
cation for notifications created by Workflow.

The ID (personld) of the person who added the
note.
Full name of the person who added the note.

This attribute is required when a Note is added
through a ProcessPulseAlert BOD.” / “Pro-
cessPulseTask BOD.” / “ProcessPulseNotification
BOD.

The date/time at which the note was created.

Identification of the note within the naotification.

Infor ION Development Guide | 83

Creating alerts, tasks, or notifications from an application

Element Note

Source/Type BOD: the notification was created by sending a
ProcessPulseNotification BOD.

WORKFLOW: the notification was created by a
workflow.

Source/Name If Type=BOD: the logical ID of the sender of the
ProcessPulseNotification BOD. For example, 11
d://infor.erp.myerp

If Type is WORKFLOW: the nhame of the workflow
definition that created the naotification. For exam-
ple, MyWorkflow.

Parameter Data of the notification that is displayed to the
user. Notification parameters are always read-
only.

For example:

<Parameter sequence="1">
<Name>OrderNumber</Name>
<Value>12345</Value>
<DataType
listID="Pulse
Datatypes">STRING</DataType>
<Label>Order Number</Label>
</Parameter>

Parameter/@sequence The sequence number of the parameter. This is
used for ordering the parameters when displaying
them to a user. It is only allowed to use this at-
tribute if there are no elements of type TreePa-
rameter in the document.

Parameter/Sequence You must specify this element in combination
with TreeParameter/Sequence. This element is
used to determine the order in which Parameters
and TreeParameters are displayed to the user.

Parameter/Name The name that identifies the parameter within the
notification. This element is required for each
parameter.

Parameter/Value The (serialized) value of the parameter. The for-

matting depends on the DataType and is the
same as the formatting that is normally used in
BOD data elements.

Infor ION Development Guide | 84

Creating alerts, tasks, or notifications from an application

Element

Parameter/DataType

Parameter/Label

Parameter/Label /@languagelD

TreeParameter

TreeParameter/Sequence

TreeParameter/TreeDefinition

TreeParameter/TreeDefinition/TreeNode

Note

The data type of the parameter. This element is
required for each parameter.

You can use these data types:

e STRING - a string value that is up to 4000
characters in length

¢ INTEGER - a numeric type that represents
a whole number

« DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

< BOOLEAN - represents a true or false value

« DATETIME - the date part and time part of
a date/time stamp separated by "T" and
ending with Z (is always UTC)

¢ TIME - the time part of a date/time stamp

« DATE - the date part of a date/time stamp

The label of the parameter that is used when
displaying the parameter to a user. This element
is required for each parameter.

The language code of the Label field.

For details, see the notes in the "Supported fea-
tures" section.

The TreeParameter consists of a TreeDefinition
and TreeNodes specified after the TreeDefinition.
The TreeDefinition defines a complex data
structure. The TreeNodes specify the data value
for the structure. The TreeDefinition and the
TreeNodes must be consistent.

Indicates the sorting sequence in which TreePa-
rameters and Parameters must be displayed to
the user in the natification. If one Sequence is
specified, all the Parameters must specify a Se-
quence element.

Definition for the data structure contained in the
TreeParameter. This definition includes several
unique TreeNodes with their ID, ParentID,
NodeName, and TreeNodeParameters.

A node in a tree using a parent relationship and
containing the definition of the properties required
for the node.

Infor ION Development Guide | 85

Creating alerts, tasks, or notifications from an application

Element Note
TreeParameter/TreeDefinition/TreeNode/Se- Indicates the sequence of the node within the
quence TreeParameter. The Sequence must be specified

for all the TreeNodes if this element is specified
for the root TreeNode. The ordering of the
TreeNodes within the structure is based on the
specified Sequence. If the Sequence is not
specified for the root TreeNode, the structure is
sorted based on the xml.

TreeParameter/TreeDefinition/TreeNode/ID The unique identifier for this tree node within this
definition of a TreeParameter.

TreeParameter/TreeDefinition/TreeNode/ParentID The ID of the node that is the parent of this node
within the tree. The root TreeNode does not have
a ParentID.

TreeParameter/TreeDefinition/TreeNode/Node- This is the unique identification of a tree node.
Name

TreeParameter/TreeDefinition/TreeNode/Label The label of the parameter that is used when
displaying the parameter to a user. You must
specify at least one label. You can specify several
labels, each with a different languagelD for
translated labels.

TreeParameter/TreeDefinition/TreeNode/Label The language code of the Label field.
/@languagelD For details, see the notes in the "Supported fea-
tures" section.
TreeParameter/TreeDefinition/TreeNode Defines a property within a TreeNode level.
/TreeNodeParameter TreeNodeParameters are optional. Values for

these properties are specified in the TreeNodes
that follow the TreeDefinition.

TreeParameter/TreeDefinition/TreeNode Indicates the sequence of the TreeNodeParame-
/TreeNodeParameter/Sequence ter within the TreeNode.
TreeParameter/TreeDefinition/TreeNode The name of the TreeNodeParameter is used to
/TreeNodeParameter/Name identify this property in the tree node instances

to specify its value.

Infor ION Development Guide | 86

Creating alerts, tasks, or notifications from an application

Element

TreeParameter/TreeDefinition/TreeNode/TreeN-
odeParameter/DataType

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label

TreeParameter/TreeDefinition/TreeNode
/TreeNodeParameter/Label/@languagelD

TreeParameter/TreeNode

TreeParameter/TreeNode/ID

TreeParameter/TreeNode/ParentID

TreeParameter/TreeNode/NodeName

TreeParameter/TreeNode/TreeNodeParameter

TreeParameter/TreeNode/TreeNodeParame-
ter/Name

TreeParameter/TreeNode/TreeNodeParame-
ter/Value

Note

The data type of the associated value. You can
use these data types:

¢ STRING - a string value that is up to 4000
characters in length

 INTEGER - a numeric type that represents
a whole number

« DECIMAL - a numeric type that has a floating
precision. Values may be expressed using
the scientific e-notation. For details about the
scientific e-notation, see Wikipedia or other
resources on the internet.

« BOOLEAN - represents a true or false value

« DATETIME - the date part and time part of
a date/time stamp separated by "T" and
ending with Z (is always UTC)

e TIME - the time part of a date/time stamp

» DATE - the date part of a date/time stamp

The label of the node that is used when it is dis-
played to a user. You must specify at least one
label. You can specify several labels, each with
a different languagelD for translated labels.

The language code of the Label field.

For details, see the notes in the "Supported fea-
tures" section.

A node in a tree using a parent relationship and
containing properties required for the node and
their values.

The unique identifier for this tree node within this
TreeParameter.

The ID of the node that is the parent of this node
within the tree definition.

The unique identification of a tree node. This
name must match a node name from the
TreeDefinition. Several TreeNode instances with
the same NodeName can exist.

List of properties for this TreeNode.

The property name that must match with a prop-
erty specified for this TreeNode in the TreeDefini-
tion.

The value for this tree node property. The value
must be consistent with the data type defined in
the tree definition.

Infor ION Development Guide | 87

Creating alerts, tasks, or notifications from an application

Element

AssignedPerson

AssignedPerson/PersonReference

AssignedPerson/PersonReference/IDs/ID

AssignedPerson/PersonReference/Name

AssignedPerson/PersonReference/Syste-
muUserindicator

DistributionPerson

DistributionPerson/ID

DistributionPerson/PersonReference

DistributionPerson/PersonReference/IDs/ID

DistributionPerson/PersonReference/Name

DistributionPerson/PersonReference/Syste-
mUserIndicator

DistributionGroup

DistributionGroup/Name

DistributionGroup/Description

DistributionGroup/Description/@languagelD

Note

The user to which the notification is currently as-
signed. When a user closes the notification, he

or she is removed from the list of assigned per-

sons.

Reference to a person.

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive).

Name of the person.

Value is true if the person is a User in IFS.
Value is false if the person is a Contact in IFS.

Person in the distribution list for the notification.
The naotification is send to each of the distribution
persons in parallel.

Identification of the distribution person within the
notification.

Reference to a person.

Identifier of the person. The ID must be a Person
ID or Contact ID as defined in IFS (case-sensi-
tive). This element is required for each distribution
person.

Name of the person.

Value is true if the person is a User in IFS.
Value is false if the person is a Contact in IFS.

This element is required for each distribution
person.

Specify one or more distribution groups to which
the notification must be distributed. This element
can be used in addition to the DistributionPerson
element, or instead of the DistributionPerson ele-
ment.

Identifier of the distribution group as defined in
Infor Ming.le User Management. The notification
is distributed to all users that are members of this
group at the time the notification is created.

Description of the distribution group. This element
is optional and is not used to determine the distri-
bution list.

Describe the language code of the description
element. This attribute is optional and is not used
for the distribution functionality.

Infor ION Development Guide | 88

Creating alerts, tasks, or notifications from an application

Note: The DistributionGroup element is supported only in the ProcessPulseNatification BOD. A
SyncPulseNotification BOD can be sent after the creation of the notification. In that case, the distribution
list of the notification is described using a DistributionPerson element for each user from the distribution

group.

Supported features

Most features of Pulse are supported when creating an alert, task, or notification through a process
BOD. This table shows which features of Pulse are supported when creating an alert, task, or notification

through a Process BOD.

Feature
Message (Description)
Priority

Defined sequence of
data elements

Hierarchy of data
Data labels
Read-only values
Editable values

Data-type dependent
controls

Action buttons

Distribution to (Pulse)
users

Distribution to external
contacts (e-mail)

Distribution to groups
Escalation policies

Translations

Locales

Hyperlinks

Process
PulseAlert

Yes
N/A

Yes

Yes
Equal to names
Yes
N/A
N/A

N/A

Yes

Yes

Yes
No

No
See note 1.

Yes
See note 2.

N/A

Process
PulseTask

Yes
Yes

Yes

Yes
Yes
Yes
Yes

Yes

Yes

Yes

N/A

Yes
No

No
See note 1.

Yes
See note 2.

Yes
See note 3.

Process
PulseNotification

Yes
N/A

Yes

Yes
Yes
Yes
N/A
N/A

N/A

Yes

Yes

Yes
N/A

No
See note 1.

Yes
See note 2.

Yes
See note 3.

Infor ION Development Guide | 89

Creating alerts, tasks, or notifications from an application

Process Process Process
Feature PulseAlert PulseTask PulseNotification
Document references Yes N/A N/A
with drill-back
Attach notes Yes Yes N/A
Add attachments Yes Yes Yes
See note 4. See note 4. See note 4.
Start workflow from No N/A N/A

alert

Notes:

1

Translations are supported for Description and Label fields, in combination with the languagelD
attribute. An occurrence of a Description or Label field that does not have the languagelD attribute
is called the 'default value' and is required. Optionally, you can add additional occurrences of these
fields, called 'translations', each having a languagelD attribute filled with a language. At runtime,
Infor Ming.le matches the display language from the user's regional settings with the language
code from the translations and shows the corresponding string. If there is no match, the default
value is displayed.

Language codes are the codes used by Microsoft.
See also: ISO 639 hitp://en.wikipedia.org/wiki/ISO_639

Parameter values are displayed in Infor Ming.le using the user's local settings, such as date and
time format, time zone, and number format. This depends on the parameter's data type. Data in
the Description element is not formatted by ION, but displayed as is. For example when the
Description contains: "On 24-12-2012T14:50:40Z the total amount was 1,234.56".

For tasks and notifications, you can use a hyperlink as a parameter value. In that case, use data
type STRING. A string is presented as a hyperlink to the Infor Ming.le user if it starts with 'http://'
or ‘https:/I'.

You can use attachments in Infor Ming.le widgets, also for items that are created using a Process
BOD. But you cannot include them in a BOD. For tasks and notifications, you can include hyperlinks
in the BOD.

Infor ION Development Guide | 90

http://en.wikipedia.org/wiki/ISO_639

Creating custom metadata

Chapter 12: Creating custom metadata

The Data Catalog component is a utility component used by ION Desk.

This section explains the Data Catalog contents and how you can add metadata for your own objects
or for extensions on standard application objects.

The Data Catalog contains metadata on objects that are sent through the ION Service. During the
installation of ION, the Data Catalog is filled with the latest version of the Infor metadata.

If you only use standard objects from Infor, you do not have to modify the Data Catalog contents. You
can use custom application objects in ION Connect, in a monitor, or in a workflow activation policy.
Add the metadata for those custom application objects to the Data Catalog.

The functionality to add custom metadata in the Data Catalog is intended only for customer-specific
metadata. Infor metadata should not be included as custom metadata.

Data Catalog contents

The Data Catalog contains noun metadata information organized in libraries. A library can contain one
or more nouns. Libraries contain standard objects, which can either be global or application-specific.
You can use the available noun metadata from all libraries in ION Desk models.

Custom objects can be of type BOD, also referred to as "custom nouns", or of type ANY, DSV, or
JSON.

At each library level, each tenant level, and each noun level, a patch number is maintained. Only the
latest noun metadata for both standard and custom nouns is stored in the Data Catalog.

For each noun, custom or standard, this information is stored:

¢ Noun Name
« Noun XSD - the XML schema definition for this noun, flattened

» Other metadata, such as the patch number (a kind of version number), the list of XPaths to key
fields in the noun, the list of verbs supported by this noun, and the relationships between this noun
and other nouns.

For custom obijects of type ANY, only the object name is stored.
For custom objects of type JSON, the JISON schema definition for each object name is stored.

For custom objects of type DSV, the DSV schema definition for each object name is stored.

Infor ION Development Guide | 91

Creating custom metadata

Before customizing the Data Catalog

Before you customize the Data Catalog, note these points:

Contact Infor for information on services to assist you when developing custom objects.

The Data Catalog contains these files:

XML Schema (XSD) files and XML files to describe objects of type BOD

« JSON Schema files to describe objects of type JSON and DSV (delimiter-separated values)

To customize the Data Catalog metadata, you must understand and adapt those files.

If you add files to the Data Catalog, you can use customized nouns in ION Desk only. To use the

customized nouns in ION Service, these nouns must be adopted by Infor applications or other

applications. The definitions in the Data Catalog must always match the objects that are sent or
received by applications that are connected to ION.

In the Data Catalog XSD files, conventions are used. These are the most important conventions:

« All elements use the type-attribute and therefore refer to named types.

» Alltypes, complex and simple, are explicit and have "Type" as a post fix. For example, Status
Type.

* The elements in a complexType containing a sequence or choice are always a ref to a single
element with a named type.

Note:

¢ In customized XSDs, do not use unions such as <xs:union memberTypes="xs:string
xs:dateTime" /> or binary data types such as xs:hexBinary.

« Ifyou create a customized version of a standard noun, it must be compatible with the standard.
If you use a new name for the customized noun, such as MySalesOrder, compatibility with the
standards is not required. When you create a version of your custom noun, it must be backwards
compatible with previous versions.

Object Naming Conventions

Objects of all types are registered by name.

These constraints apply:

The object name must be unique across all custom objects types and standard nouns and application
specific nouns. For example, if the InforOagi s library is imported, a custom object with the name
Sync.SalesOrder must not exist.

The object name is case-preserving, but case-insensitive. If 'MyDocument' exists, you cannot
create 'MyDOCUMENT' except by overwriting the existing one.

The maximum length for an object name is 100 characters.

The object names for the metadata files cannot exceed 255 characters. This is including the path
in the export file, for example: JSON/myObject/myObject.schema. json

Infor ION Development Guide | 92

Creating custom metadata

Custom objects of type ANY

You can use objects of type ANY in ION File Connector and IMS Connector.

A custom object of type ANY is only defined by its name.

An object name may contain these characters:

Any standard letter in any language
Numbers 0-9

Underscore ()

Hyphen (-)

Period (.)

Defining a custom object of type ANY

1

To create an object of type ANY, prepare this folder structure for the import:
FOLDER: ANY

+-- FOLDER: <object name>

+---- FILE: <object name>.xml

The <object name>.xml file is empty for objects of type ANY.

To import a ZIP file containing one or more definitions for objects of type ANY, use the Custom
Objects page in ION Desk.

See the Infor ION Desk User Guide.

Custom objects of type JSON

You can use objects of type JSON in ION File Connector, IMS Connector, and ION AnySQL Connector.

A custom object of type JSON is defined by its name and a JSON schema file.

An object name may contain these characters:

Any standard letter in any language
Numbers 0-9

Underscore ()

Hyphen (-)

Period (.)

Infor ION Development Guide | 93

Creating custom metadata

Defining a custom object of type JSON

1

To create an object of type JSON, prepare this folder structure for the import:
FOLDER: gsonN

+-- FOLDER: <object name>

+---- FILE: <object name>.schema.json

+---- FILE: <object name>.properties.json

To import a ZIP file containing one or more definitions for objects of type JSON, use the Custom
Objects page in ION Desk.

See the Infor ION Desk User Guide.

These validations are performed upon import:

e The object name must be unique and must comply to the object naming restrictions mentioned
above.

< If an object with the same name is already registered with another type, the import fails.

< If an object with the same name is already registered with type JSON, the imported schema
overwrites the existing schema.

¢ The <object name>.schema.json schema file is validated as follows:
e There must be only one JSON schema file for a given object name.
* The schema file must be valid JSON according to JSON schema definition, version draft-06.
e The schema file must use UTF-8 encoding.
e The “anyOf” keyword is not allowed.
» The “oneOf” keyword is supported only to describe a type that can be null.

e The<object name>.properties.json fileis optional and can contain additional metadata
properties for the object.

For information on how to define this file, see Defining additional object metadata properties
on page 101 and Additional properties file on page 101.

Newline-delimited JSON

If your data object uses newline-delimited JSON, you must specify that in your object schema.

1

Specify the schema for a single object.
All objects in a single data object must have the same schema.

Include a property called x-stream and set it to true.
This code is a newline-delimited JSON schema example:

{
"Sschema": "http://json-schema.org/draft-06/schema#",
"x-stream":true,
"type": "object",
"properties": {
"fieldl”™: {

Infor ION Development Guide | 94

Creating custom metadata

"type": "integer"
bo
"field2": {

"type": "string"

}
}

This code shows the JSON data that corresponds with the schema example:

{"fieldl":123,"field2":"Some text"}
{"fieldl":456,"field2" :"Another text"}
{"fieldl":789,"field2":"More text to be added"}

Validations that are performed on import for newline-delimited JSON follow the same rules as
conventional JSON.

Custom objects of type DSV

You can use objects of type DSV in ION File Connector and IMS Connector. DSV stands for
Delimiter-Separated Values.

When you register a DSV object schema in the Data Catalog, it is assigned a subtype. Based on the
separator value that is provided in the schema, one of these subtypes is assigned:

 CSV - comma-separated values
* TSV - tab-separated values

* PSV - pipe-separated values

» Other

A custom object of type DSV is defined by its name and a schema file.
An object name may contain these characters:

» Any standard letter in any language
* Numbers 0-9

* Underscore ()

- Hyphen (-)

* Period (.)

Defining a custom object of type DSV

1 To create an object of type DSV, prepare this folder structure for the import:
FOLDER: Dsv
+--FOLDER: <object name>

+----FILE: <object name>.schema.json

Infor ION Development Guide | 95

Creating custom metadata

+----FILE: <object name>.properties.json

These validations are performed upon import:

The object name must be unique and must comply to the object naming restrictions mentioned
above.

If an object with the same name is already registered with another type, the import fails.

If an object with the same name is already registered with type DSV, the imported schema
overwrites the existing schema.

The <object name>.schema.json schema file is validated as follows:

» There must be only one DSV schema for a given object name.

e The schema file must use UTF-8 encoding.

« The schema file must contain a “dialect” property. This property defines the format of the
delimited data object.

The dialect property must contain a “separator” property, which defines the character that
separates the values in a row within the data object.

» The “properties” element in the schema file should list the fields, in order, that are expected
to be found in the DSV data object. This section of the schema must be valid JSON
according to schema definition, version draft-06.

¢ The “anyOf” keyword is not allowed.
e The “oneOf” keyword is supported only to describe a type that can be null.

The <object name>.properties.json fileis optional and can contain additional metadata
properties for the object.

For information on how to define this file, see Defining additional object metadata properties
on page 101 and Additional properties file on page 101.

This code is an example of a DSV schema definition:

"title": "myDelimitedFile",
"description": "DSV Schema for myDelimitedFile",
"dialect": {
"separator": ",",
"skipLines": 1,
"enclosingCharacter": "\""
bo
"properties": {
"Code": {
"description": "Customer code",
"type": "string",
"maxLength": 10
s
"Customer": {
"description": "Customer name",
"type": "string",
"maxLength": 100
bo
"PubDatetime": ({

"description": "Publication timestamp",
"type": "string",
"format": "date"

Infor ION Development Guide | 96

Creating custom metadata

Dialect properties for DSV objects
This table shows the dialect properties that are supported for DSV objects.

Dialect property Type Description

separator string The delimiter character that separates the values in a
row of data. The value of the separator should be de-
fined as follows for the different delimited file types:
¢ Comma-separated (CSV): "separator":","

e Tab-separated (TSV): "separator":"\t"
e Pipe-separated (PSV): "separator":"|"
Other separator values are allowed, but these must be

single-character separators. For example, double pipes
(11) are not supported.

Required

skipLines integer Indicates the number of header rows to skip over at the
top of the file before reaching the actual data.
Optional

enclosingCharacter |string The character that identifies the start and end of a value.

If two consecutive enclosing characters are found in a
data object, they are interpreted as one, therefore es-
caping the enclosing character.

Optional

The line separator is not specified in the metadata.
These characters are regarded as the end of a line, unless they are placed within enclosing characters:

* Acarriage return
* Aline feed
e The combination of carriage return and line feed

The last line may or may not have a line separator.

The encoding is not specified in the metadata. It is always assumed to be UTF-8.

Infor ION Development Guide | 97

Creating custom metadata

Using datetime formats

When dates and times are included in JSON and DSV data objects, you should define them as such
in the object metadata. This makes it clear to applications that use the metadata that the values should
be interpreted as dates or times. Infor applications that use dates and times must follow the ISO 8601
RFC 3339 standard formats.

JSON Schema draft-06 supports these date and time formats for string instances:

+ date-time
e date
e time

When you include dates and times in your objects, it is best practice to use “date-time”, in UTC, wherever
possible. Dates without a time and times without a date regularly occur in application data. Therefore,
you can also use the "date" or "time" formats alone.

Standard format definitions

This table shows the standard format definitions:

Metadata definition Expected format in data ob- |[Example data
ject
“datetimeProperty”: { yyyy-MM-ddTHH:mm:ss[.S]Z "2017-07-04T14:08:432"
“type":,,String,,, or
“format”:”date-time”
} "2017-07-04T14:08:43.1232"
“dateProperty” : { yyyy-MM-dd “2017-07-04"

” ”

“type”:”string”,
“format”:”date”

}

“timeProperty”: { HH:mm:ss[.S] “14:08:43”
“type”:”string”, Or
“format”:”time”

} “14:08:43.123”

This format is not supported by
Data Lake services when pro-
cessing data. Times without
dates are treated as string val-
ues.

Infor ION Development Guide | 98

Creating custom metadata

Custom datetime formats

To define a datetime format that is not a standard supported by JSON schema draft-06, you can use
the “x-dateTimeFormat” custom property in your object metadata. This enables the interpretation of
data from third-party applications that do not adhere to the ISO 8601 RFC 3339 standard.

Custom format definitions

The tables in this section show the custom datetime formats that are currently supported. Any other
formats specified are not recognized by applications that use the metadata. All dates that are included
in a data object are assumed to be in UTC. The value that is provided for “x-dateTimeFormat” is
case-sensitive. Therefore, you must include this value in your metadata exactly as it is defined below.

This table shows the metadata definitions:

Metadata definition

“epochMillisProperty”: {
“type”:”integer”,
“x-dateTimeFormat”:”epoch-millis”

}

“americanDateTimeProperty”: {
“type”:”string”,
“x-dateTimeFormat”:”M/d/yyyy

h:mm:ss[.S] a”

}

“americanDateProperty”: {
“type”:”string”,

“x-dateTimeFormat”:”M/d/yyyy”
}

“integerDateProperty”: {
“type”:”integer”,
“x-dateTimeFormat” :”yyyyMMdd”

}

“threeCharMonthProperty”: {
“type”:”string”,
“x-dateTimeFormat” :”dd-MMM-yyyy

HH:mm:ss”

}

This table shows the tokens for datetime formats:

Token

M

Description

Datetime in epoch milliseconds for integer in-
stances.

Example: 1537204639000

American datetime format for string instances.
Examples:

“10/9/2017 12:42:01 PM”

or

“10/9/2017 12:42:01.139 PM”

American date format for string instances.
Example: “6/23/2018”

8-digit integer date for integer instances.
Example: 20180601

Three-character month for string instances, Ora-
cle format. This format always translates to a US
locale.

Example: “01-SEP-2018 14.:08:23"

Description

Month, one or two digits: 1-12

Infor ION Development Guide | 99

Creating custom metadata

Token Description

MM Month, two digits: 01-12

MMM 3-character month: JAN, FEB, MAR, etc.

D Day of the month, one or two digits: 1-31

dd Day of the month, two digits: 01-31

yyyy Year, four digits: 0001-9999

HH Hours, 24-hour, two digits: 00-23

h Hours, 12-hour, one or two digits: 1-12

mm Minutes, two digits: 00-59

Sss Seconds, two digits: 00-59

[S] Optional fractional seconds, up to nine digits: O-
999999999

a AM/PM designator when using 12-hour format:

"AM", "am", "PM", or "pm"

Schema Property Order

Standard JSON Schema does not support specifying an order to the properties defined in a schema.
If the fields in your JSON or DSV data objects must be displayed in a specific order, you can use the
custom property “x-position” to define what that order must be. The value for "x-position" must be an
integer.

Example Schema:

{
"Sschema":"http://json-schema.org/draft-06/schema#",
"title":"Schema Property Order",
"description":"Sample schema to include property order",
"type" : "Object" ,
"properties": {
"divisionName": {
"type":"string",
"maxLength":16,
"x-position":2
by
"divisionId": {
"type" : "string" ,
"maxLength":250,
"x-position":1
by
"updateDateTime" : {

” "

"type":"string",

Infor ION Development Guide | 100

Creating custom metadata

"format":"date-time"

Yo

"variationNumber": {
"type":"integer"

b

"companyId": {
Iltype" : "Striflg" ,
"x-position":3

Since “x-position” is optional, it is not required to include it for all properties in the schema. It is up to
the applications using this metadata to determine how to handle the display of fields that do not include
an “x-position” value.

Defining additional object metadata properties

When you import a schema, you can register additional metadata properties for objects of type JSON
and DSV with the Data Catalog.

To register these additional metadata properties, you require an object properties file.

This is an optional file that contains extra properties that are not defined in the object schema. The file
name must match the object name and have the .properties. json extension.

You can include these additional properties when you import the object schema in the Data Catalog
Ul. For information on the file structure for including additional metadata properties, see the "Zip file
structure for import" section in the Infor ION Desk User Guide.

Additional properties file

Validation

The properties file is validated using this schema:

"Sschema": "http://json-schema.org/draft-06/schema#",
"title": "Additional Object Metadata",
"description": "Additional Object Metadata",
"type": "object",
"properties": {
"IdentifierPaths": {
"type": "array",
"items": {
"type": "string"

Infor ION Development Guide | 101

Creating custom metadata

}
|
"VariationPath": {
"type": "string"
o
"TimestampPath": {
"type": "string"
s
"DeleteIndicator": {
"type": "object",
"properties": {
"path": {
"type": "string"
}y
"value": {
"type":["string", "boolean", "number"]
}
}r
"additionalProperties":false,
"required": ["path", "value"]
o

"AdditionalProperties": {

"type": "object",
"additionalProperties": true
t
bo
"additionalProperties": false
t
Properties

This table shows each of the properties that may be included in the file. All properties are optional.

Property Description
IdentifierPaths The set of properties of the data object that identify the object. This
applies if the data object consists of a single JSON or DSV object.

Alternatively, the set of properties of the data objects. This applies
if the data object holds a newline-delimited list or an array of objects.

Each property in the array must be a JSON path to the property that
is the identifier or part of the identifier.

VariationPath The path to a property that indicates a variation number or variation
string. This must be a JSON path.
If this property is available, it can be used for these purposes:

¢ To determine the sequence in which multiple changes on a
single object took place

< To find the latest version of an object

Infor ION Development Guide | 102

Creating custom metadata

Property Description

TimestampPath The path to a property that indicates the moment the object was last
updated or created in the application that owns the data. This must
be a JSON path. The property it refers to must have a date-time
format.

If this property is available, it can be used to determine the order in
which changes on a set of objects from the same application took
place. This property is less accurate than VariationPath, but can
be used across objects.

AdditionalProperties This area can be used for additional properties that are not owned
or prescribed by the Data Catalog. Any custom properties for appli-
cations must be added here.

Note: When you add additional properties, ensure that the name
of each property is unique. We recommend that you include the
application logical ID as a prefix to the property name.

DeleteIndicator The path to the property that indicates whether the object is deleted,
or marked as deleted, and the property value to indicate that. The
property must be a boolean, number, or string, and the specified
value must match that data type.

When you use DeleteIndicator, these properties are required:

e path - The path to a property that holds the delete indicator for
the object. This must be a JSON path.

< value - The value of the delete indicator property to determine
that the object is deleted. This value can be a string, boolean,
or number. The value must match the data type of the property
that “path” is pointing to.

Example

This code shows an example of an object’s properties file:

"IdentifierPaths": [
"$.*.myIdProperty",
"S.* . mySecondIdProperty"
1,
"VariationPath":"$.*.myVariationId",
"TimestampPath":"$.* . myTimestampProperty",
"DeleteIndicator": {
"path":"$.* . myDeleteIndicatorProperty",
"value":"deleted"
b

"AdditionalProperties": {

"infor ies searchPath":{...},
"infor ies indexDefinition":{...},
"acme myCustomThingies":{...}

Infor ION Development Guide | 103

Creating custom metadata

Defining a custom noun

You can add the metadata for your own nouns to the Data Catalog.

Customer-defined nouns do not have to fully, adopt all practices as used in standard nouns, such as
the way object IDs or references are formatted. They must meet these conditions:

* The noun content is in XML.
« The noun has an identifying attribute.
e The noun's envelope is a BOD.

Nouns are described by XML Schema (XSD) files. The Infor-delivered nouns are the officially published
schemas. Customers can create their own XMLSchema for their nouns.

The name of a custom noun must be unique compared to the standard noun names that are already
uploaded in the Data Catalog. We recommend that you always precede Custom nouns with "My. " For
example, MyMaterialRelease Or MyShippingSchedule. Using "My "avoids naming conflicts with
standard Infor nouns.

The name of a custom noun may contain:

* Any standard letter in any language
* Numbers 0-9
» Underscore

To add a custom noun to the Data Catalog, you must prepare an archive file containing the metadata.
You can upload several custom nouns in one archive at the same time. For each custom noun, a noun
data-set composed of two files must be present and must contain the noun name in the title:

. <nounname>.xml
. <nounname>.xsd

These additional validations are performed on the archive file upon import by ION Desk:

» The archive may only contain valid XSD and valid XML files.

* The noun name of the XSD file must be the same as the noun name used inside the XSD file.
* The custom noun definition may only be defined in one XSD file.

« The XML files that defined the metadata of the custom noun must refer to this namespace:

xmlns="http://schema.infor.com/CloudRegistry/1"

Upon upload of a custom noun, ION Desk assigns this noun a patch number, depending on the first
available number for the current tenant. When the same custom noun is uploaded again, the patch
number increases. ION Desk does not compare the noun definition contents of the new noun and the
noun that already exists in the Data Catalog.

To create the metadata for a custom noun:

1 Define the custom noun schema file (XSD) and verify that this is a valid schema. Save this file with
the name <nounname>. xsd.

Complete these steps:

Infor ION Development Guide | 104

Creating custom metadata

a Copy the XMLSchema text below into a file with the name of your noun with a . xsd” extension.
For example: MyMaterial.xsd.

<?xml version="1.0" encoding="utf-8"?>

<xs:schema targetNamespace="http://schema.infor.com/InforOAGIS/2"

xmlns="http://schema.infor.com/InforOAGIS/2"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema" elementFormDefault="qual

ified" attributeFormDefault="unqualified" version="1.0.0">
<xs:element name="MySampleDocument" type="MySampleDocumentType"/>

<xs:complexType name="MySampleDocumentType">
<xs:sequence>
<xs:element name="SampleHeader" type="SampleHeaderType"
minOccurs="1"/>
<xs:element name="SampleLine" type="SampleLineType"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="SampleHeaderType">
<xs:sequence>
<xs:element name="DocumentID" type="xs:normalizedString"
minOccurs="0"/>
<xs:element name="DocumentDateTime" type="xs:dateTime"
minOccurs="0"/>
<xs:element name="Status" type="xs:string" minOccurs="0"/>

<xs:element name="Description" type="xs:string" minOc
curs="0"/>
<xs:element name="ShipmentID" type="xs:normalizedString"
minOccurs="0"/>
<xs:element name="IsActive" type="xs:boolean" minOc
curs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="SampleLineType">
<xs:sequence>
<xs:element name="LineNumber" type="xs:integer"/>
<xs:element name="Amount" type="xs:decimal" minOccurs="0"/>

<xs:element name="Note" type="xs:string" minOccurs="0"
maxOccurs="unbounded" />
</xXs:sequence>
</xs:complexType>
</xs:schema>

b Open the file in an editor and replace all occurrences of "MySampleDocument " with "MyMa
terial".

¢ Adapt the file as required to define the attributes of the custom noun. Do not refer to XSD files
from the Standard folder.

Define the custom noun metadata properties file with the name <nounname>.xml. Create a file
named [NounName] .xml. For example, if your custom noun is called MyMaterial, the file must
be named MyMaterial.xml.

Infor ION Development Guide | 105

Creating custom metadata

In this file, add an entry to specify the identifier for the custom noun, verbs that are supported, and
the relation it has with other nouns. Note the ‘IDXPath’ is mandatory, you can leave the ‘Relation’
element empty if there is no other noun to reference.

For example:

<?xml version="1.0" encoding="utf-8"?>
<NounMetadata xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://schema.infor.com/InforOAGIS/2">
<Noun>
<NounName>MySampleDocument</NounName>
<NounType>Transactional</NounType>
<IDXPath>/*/DataArea/MySampleDocument/SampleHeader/DocumentID</IDX
Path>
<DescriptionXPath>/*/DataArea/MySampleDocument/SampleHeader/De
scription</DescriptionXPath>
<StatusXPath>/*/DataArea/MySampleDocument/SampleHeader/Status</Sta
tusXPath>
<DocumentDateTimeXPath>/*/DataArea/MySampleDocument/SampleHeader/Docu
mentDateTime</DocumentDateTimeXPath>
<SupportedVerbs>
<SupportedVerb>Acknowledge</SupportedVerb>
<SupportedVerb>Process</SupportedvVerb>
<SupportedVerb>Sync</SupportedVerb>
</SupportedVerbs>
</Noun>
<Relation type="Transactional">
<ToNoun>Shipment</ToNoun>
<Priority>10</Priority>
<RelationLabel>My sample document linked to shipment</Relationla
bel>
<RelationPaths>
<FromNounPath>/*/DataArea/MySampleDocument/SampleHeader/Ship
mentID</FromNounPath>
<ToNounPath>/*/DataArea/Shipment/ShipmentHeader/Documen
tID[1]/ID</ToNounPath>
</RelationPaths>
</Relation>
</NounMetadata>

Create a folder for each custom noun and place corresponding xsd schema file and xml file
underneath it. The folder name must match the noun name.

Gather the custom noun metadata files into one archive file and import this archive into ION Desk.
For information about importing custom nouns into ION Desk, see the Infor ION Desk User Guide.

Once the custom noun is uploaded to the Data Catalog, it is visible to all users of the current tenant.
You can perform these actions using this custom noun:

Select the application object in a connection point.

Select the attributes of the object in a filter or content-based routing in an object flow.
Select the application object and its attributes in a workflow activation policy.

Select the application object, its references, and its attributes in a monitor.

Important notes:

Infor ION Development Guide | 106

Creating custom metadata

When using namespaces in your XSDs, the local element name must be unique at any level in a BOD.
Two elements having the same name but a different namespace must not exist within the same parent
element. So, for example, this object is not supported:

<Customer>
<Address xmlns="namespacel">

</Address>
<Address xmlns="namespace2">

</Address>
</Customer>

Customizing an existing noun

Standard nouns contain placeholders for adding customizations: the UserAreas. Usually, UserArea
elements are available in multiple locations for a noun. For example, in the header and in the lines.

You can use the UserArea in two ways:

* Using properties in the UserArea. This is the preferred method, because it is supported automatically
for any BOD. No changes are required in the Data Catalog.

* Using a custom XML structure in the UserArea. This method is required if the custom data is too
complex to fit in the property structure.

Both approaches are explained below.

Using properties in the UserArea

If your custom data can be organized in name-value pairs, you can use the standard 'Property’ structure
to include this data in the UserArea. In that case customize the application that sends a BOD so that
it includes the required properties. Customize the application that receives the BOD so it can handle

the data.

This code is an example of a UserArea containing data using the standard Property structure:

<UserArea>
<Property>
<NameValue name="AcmeCustomNote" type="StringType">My
note</NameValue>
</Property>
<Property>
<NameValue name="AcmeCustomQuantity" type="Numeric
Type">10.00</NameValue>
</Property>
</UserArea>

Infor ION Development Guide | 107

Creating custom metadata

Note: To avoid name clashes with properties that may already be used by some applications, we
recommend that you use a prefix, such as your company name.

This table shows some of the types that you can use:

Type Examples of Values

StringType This is a string

NumericType 10.00

IntegerNumericType 1234

DateTimeType 2004-12-31T12:32:14.123Z

IndicatorType true, false Two possible values

To use UserArea properties in ION, no changes are required in the Data Catalog. If you use a BOD
that has a UserArea, you can select your properties in an event monitor or an activation policy.

Note: You cannot select your properties in ION Connect (content-based routing and filtering).

To select a UserArea property:

1 Inthe attribute selection window, find the location of the User Area and expand the User Area.
For example, the window can contain this code:

Contract
ContractHeader

UserArea
Property
NameValue

2 Select the NameValue attribute.

3 Specify the data type for the attribute.
Normally the data type is retrieved from the Data Catalog but when using a UserArea Property you
must specify the data type, because properties can have different data types.

4 For the selected NameValue attribute, define an attribute filter on the name to select the specific
property you are interested in.
For example:

Contract/ContractHeader/UserArea/Property/@name = "AcmeCustomQuantity"

Note: If you use multiple properties from the same user area in an event monitor or workflow
activation policy, you must define the filter for the first property before you can select the next
property. Otherwise two selected attributes will have the same XPath, which is not accepted in
ION Desk.

Infor ION Development Guide | 108

Creating custom metadata

Using a custom XML structure in the UserArea

If your custom data is too complex to fit in the standardProperty structure, you must use a custom
XML structure.

By default, the UserArea elements in BODs are of type 'AnyType', because they can contain any
data: standard properties, your custom structure, or anything else. In these situations, you must define
an XSD in the Data Catalog:

» To select your properties in ION Connect, in content-based routing or filtering.
» To select your properties in an event monitor or an activation policy.

After adding your XSD to the Data Catalog as described later, your custom elements are displayed in
the attribute selection windows in ION Desk.

For example, assume you must add this custom data in the BOD UserArea:

<UserArea>
<AcmeCustomContacts>
<Contact>
<Name>Someone</Name>
<Email>someone@acme.com</Email>
</Contact >
<Contact>
<Name>Someone Else</Name>
<Email>someone.else@somewhere.com</Email>
</Contact >
</AcmeCustomContacts >
</UserArea>

In this case, you must complete these steps:

1 Customize the connection point that sends the BOD, to fill the UserArea as required. Customize
the connection point that receives the BOD, to handle the data.

2 Create an XML Schema Definition (XSD) file to describe the added XML.
For example, the AcmeCustomContacts.xsd file can contain this code:

<?xml version="1.0" encoding="UTF-8"7?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="AcmeCustomContacts" type="AcmeCustomContact
sType" />
<xs:complexType name="AcmeCustomContactsType">
<xs:sequence>
<xs:element name="Contact" type="ContactType" maxOccurs="un
bounded" />
</xs:sequence>
</xs:complexType>
<xs:complexType name="ContactType'">
<xs:sequence>
<xs:element name="Name" type="xs:string"/>
<xs:element name="Email" type="xs:string"/>
</xs:sequence>

Infor ION Development Guide | 109

Creating custom metadata

</xs:complexType>
</xs:schema>

Note: The XSD for a user area extension must have a single top-level element. To add multiple
elements, put them under a single parent element.

In ION Desk, select Configure > User Area Extensions > Schema Files and add the XSD file
to the Data Catalog.

In ION Desk, select Configure > User Area Extensions > Extensions. Map the schema file to
the UserArea elements of the nouns that use the User Area Extension.

Note: For details about the Configure > User Area Extensions pages, see the Infor ION Desk User
Guide .

Using an XSD extension for validation

By default, the UserArea is an 'AnyType’, because the UserArea can contain any data: standard
properties, your custom structure, or anything else. In this default situation, a BOD normally validates
successfully against the BOD XSD, independent of the contents of the UserArea. If you defined a
UserArea extension XSD in the Data Catalog, to use the XSD for validating your BOD XML, you must
ensure the validator can find the XSD extension.

To achieve this:

1

Add namespace information to the XSD.
For example, the AcmeCustomContacts.xsd file can contain this code:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://schema.acme.com/userarea"
targetNamespace=="http://schema.acme.com/userarea"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:element name="AcmeCustomContacts" type="AcmeCustomContact
sType" />
<xs:complexType name="AcmeCustomContactsType">

</xs:complexType>
</xs:schema>

In the XML that contains the custom data, include a reference to the namespace:

<UserArea>
<acme:AcmeCustomContacts xmlns:acme="http://schema.acme.com/user
area">
<acme:Contact>
<acme :Name>Someone</acme : Name>
<acme:Email>someone@acme.com</acme:Email>
</acme:Contact >
</acme:AcmeCustomContacts >
</UserArea>

Infor ION Development Guide | 110

Creating custom metadata

Note: The namespace, in this case "http://schema.acme.com/userarea”, must be the same
as in the XSD.

After completing these steps you can validate the BOD XML against the BOD XSD. In this case, for
example, validate the BOD XML against SyncContract.xsd.

Note: Validation can help when you set up and test a customization, but reduces performance.
Therefore, if possible, avoid validation of all messages sent or received by your application. The ION
Service also does not validate the BODs against the XSDs as defined in the Data Catalog.

Infor ION Development Guide | 111

Custom message headers

Chapter 13: Custom message headers

You can define custom message headers for objects that are stored in the Data Catalog. After you
have defined custom message headers, they are available to attach to objects that are processed by
ION services.

To define custom headers, you can use one of these methods:

1

3

Direct import to Data Catalog through ION Desk. On the Object Schemas page, you can include
a custom headers file in the object import ZIP file. This method is useful if you only want to add or
update custom headers for an object, but not the object itself. It is also useful when updating custom
headers for multiple objects in the Data Catalog.

Include custom headers when adding or updating an object using the Data Catalog POST /v1/object
APIL.

Note: This option is not viable for BODs because the API only supports JSON, DSV, and ANY
objects.

In the Data Catalog application on an object’s details page.

For more information on methods 1 and 3, see the “Configuring custom message headers” section in
the Infor ION Desk User Guide.

Custom headers file format

ZIP file import validation

When you import custom headers in ION Desk, the file is validated using this schema:

{

"Sschema": "http://json-schema.org/draft-06/schema#",
"$id": "http://json-schema.org/draft-06/schema#",
"title": "Custom Headers Schema",
"type" : "Object",
"properties": {
"customHeaders": {
"type": "array",
"items": {
"type": "Object",
"properties": {
"objectName": {
"type": "String"

Infor ION Development Guide | 112

Custom message headers

}o
"headers": {
"type": "array",
"maxItems": 3,
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",

"pattern": "“Custom [a-zA-Z0-9]+$",

"maxLength": 250
s
"dataType": {
"enum": [
"String",
"Integer",
"Decimal",
"Boolean",
"Date" ,
"DateTime"

}
b
"required": [
uname",
"dataType"
]

}

Y

"required": [
"objectName",
"headers"

This is an example of a custom headers file:

{

"customHeaders": [
{
"objectName": "Process.PlannedTransfer",
"headers": [
{
"name": "Custom processItemID",
"dataType": "String"
}
]
by
{
"objectName": "Sync.PlannedTransfer",

Infor ION Development Guide | 113

Custom message headers

"headers": [
{
"name": "Custom syncItemID",
"dataType": "String"
}y
{
"name": "Custom syncUPCID",
"dataType": "String"
}
]
by
{
"objectName": "Inventory Repo",
"headers": [
{
"name": "Custom itemNumber",
"dataType": "Integer"
}
]
by
{
"objectName": "MITMAS",
"headers": [
{
"name": "Custom attributeModel",
"dataType": "String"

Data Catalog API validation

When you register an object with the Data Catalog through the POST /v1/object API, custom headers

for that object are validated against this schema:

"Sschema": "http://json-schema.org/draft-06/schema#",
"$id": "http://json-schema.org/draft-06/schema#",

"title": "Custom Headers Schema",
"type": "Object",
"properties": {
"customHeader": {
"type": "Object",
"properties": {
"objectName": {
"type": "string"
b
"headers": {
"objectName": {
lltype": "Stril’lg"
}o

Infor ION Development Guide | 114

Custom message headers

"headers": {
"type": narray",
"maxItems": 3,
"items": {
"type": "object",
"properties": {
"name": {
"type" :
"pattern":
"maxLength":
}s
"dataType": {
"enum": [
"String",
"Integer",
"Decimal",
"Boolean",
"Date",
"DateTime"

"string",

250

t
bo
"required": [
"name",
"dataType"
]
}
b
"required": [
"objectName",
"headers"

"~Custom [a-zA-Z0-9]+S",

This is an example of the input body for the API that is used to register an object with custom headers:

"name" :"mySalesOrder",
Al type Al : Al JSON" 0

"schema": {...},
"properties":{...},
"customHeader": {
"objectName": "mySalesOrder",
"headers": |
{
"name": "Custom salesOrderId",
"dataType": "Integer"
by
{
"name": "Custom shipToAddress",

Infor ION Development Guide | 115

Custom message headers

"dataType": "String"

Properties

This table shows the properties in the file:

Property

customHeaders

CustomHeader

objectName

Description

An array of JSON objects. Each JSON object
contains the name of an object schema and the
headers to be defined for that specified object.

Optional.

Note: Applies to the zip file import only.

A JSON object that contains the object name and
the list of headers to be defined for that object.
Optional.

Note: Applies to the POST API only.

The name of the object for which the custom
headers should be defined.

For BODs, you must specify the full object name
as opposed to only the noun.

For example, Sync.SalesOrder
Required.

Infor ION Development Guide | 116

Custom message headers

Property Description

headers An array of headers to be defined for the object.
A maximum of three custom headers may exist
per object.

Required, but the array can be empty. If an
empty array is found, any existing custom head-
ers for the associated object are deleted.

name The name of the custom header.

The name must begin with Custom and can
only contain alphanumeric characters, without
any spaces. It cannot exceed 250 characters in
length.

Required.

dataType The data type that the custom header value is
expected to have.
These are possible data types:

e String

e Integer
e Decimal
 Boolean
 Date

« DateTime

Note: These are case-sensitive and must match
exactly to pass validation.

Required.

Infor ION Development Guide | 117

Application Programming Interface (API)

Chapter 14: Application Programming Interface (API)

You can use several ION APIs.
The available ION APIs are:

* ION OneView

e Alarms

e IMS

* ION Process

« Data Catalog

e Business Rules

For more information on how to use the APIs, see the Infor ION APl Administration Guide.

ION services such as OneView can only be used through ION API. As an ION user you must be
authorized as administrator to see the ION API icon in the Infor Ming.le application menu. Click the
ION API icon to find details such as the existing methods.

ION Process API

The ION Process APIs expose functionality that is related to:

» Workflows that run in the Workflow engine.
» Alerts, tasks, and notifications managed by the Pulse engine.

The ION Process APIs are located in the “Infor ION” API Suite and these endpoints:

* process/application

This endpoint exposes methods that are authorized at application level and do not require a user
identification. After a client application has access to this endpoint, it can call any method without
further security checks being applied.

* process/user

This endpoint exposes methods that are authorized at user level. Internal verification is performed
to determine whether the user who calls this API has the permission to perform this call. For
example, you cannot close a task that is not assigned to you.

Infor ION Development Guide | 118

Application Programming Interface (API)

For detailed information about the methods that are exposed in each endpoint, see the Swagger
documentation of each endpoint. For more information on how to use ION APIs and how to interact
with Swagger documentation for the APl methods, see the Infor ION API Administration Guide.

Data Catalog API

The Data Catalog is an application that runs in the ION Grid. It exposes a REST Service with API
methods to run one of these actions:

» Retrieve a list of all existing objects in the Data Catalog.
» Register object metadata for JSON and DSV objects.

» Retrieve metadata for JSON and DSV objects.

* Retrieve a list of BOD nouns.

» Retrieve noun properties for BODs.

Interface and consumption methods are exposed through the Data Catalog API Service registered
within the ION API Suite for Infor ION.

For more information on using ION APIs and interacting with Swagger documentation for the API
methods, see Infor ION APl Administration Guide.

Additionally, the API uses the OAuth 1.0 authorization type. To use this method of authentication, you
must obtain security credentials for the DataCatalog service from your system administrator. For a
technical description of the API methods, see the swagger documentation of the Data Catalog endpoint
on;

https://<your server name>:9543/datacatalog/swagger.json
Note: The port number may be different on your installation.

To check whether the /datacatalog endpoint is started, run the ping method:
https://<your server name>:9543/datacatalog/ping

You can run this method from a browser window. A successful reply returns the REST API version
number, such as 1.

Generating security credentials

A client application can connect to the Data Catalog REST service using OAuth 1.0 security credentials.
To generate the OAuth security keys for a client application:

1 On the server where ION is installed, open the Grid UL.

2 Select Security > OAuth Credentials. Click + Add New.

3 Specify a name such as DataCatalog_account.

4 Inthe list of roles, select DataCatalog. On the right side, select one of these check boxes:

Infor ION Development Guide | 119

Application Programming Interface (API)

« datacatalog-admin to give access to all the available APl methods
« datacatalog-reader to give access to the read-only methods of the GET type.

5 Click Save.
Note: The OAuth keys are now displayed. Save these keys before you close the dialog box.

6 Copy the Secret Key and Consumer Key to a text file.
7 Click OK.

The client application can use these keys to connect to the data catalog.
These are the authorization details:

* Type: OAuth 1.0

» Consumer Key: See the saved value

* Consumer Secret: See the saved value
» Signature Method: HMAC-SHA256

Available REST APIs

This table shows the available APl methods:

Method Type Description

/datacatalog/ping GET Verify whether the REST Ser-
vice is running. If successful, the
reply contains the API version

number.
/datacatalog/vl/documen |GET Returns a list of all documents
t/list in the Data Catalog. Optionally,

you can filter by document type
or document name.

Note: This API has been depre-
cated. Use /datacatalog/v
1/object/1list instead.

Infor ION Development Guide | 120

Application Programming Interface (API)

Method

/datacatalog/vl/documen
t/json

/datacatalog/vl/documen
t/json/{name}/schema

/datacatalog/vl/documen
t/json/{name}/propertie
s

/datacatalog/v1l/object

Type
PUT

GET

GET

POST

Description

Upload a document of type
JSON with its schema and
properties.

For validation details, see
Defining a custom object of type
JSON on page 94.

Documents are uniquely identi-
fied by their name. A subse-
quent upload overwrites the
previous document definition.

Note: This API has been depre-
cated. Use the POST /dataca
talog/vl/object APl in-
stead.

Returns the JSON schema for
the specified document name.

Note: This API has been depre-
cated. Use /datacatalog/v
1/object/{name} /schema
instead.

Returns the JSON properties for
the specified document name.

Note: This API has been depre-
cated. Use /datacatalog/v
1/object/{name} /proper
ties instead.

Upload an object to the Data
Catalog.

For validation details, see the
“Defining a custom document of
type ..."” section for the specific
type.

Note: This API cannot be used
to upload a BOD object.

Objects are uniquely identified
by their name. A subsequent
upload overwrites the previous
object definition for that type. If
an object has the same name
as another object of a different
type, the import for the new ob-
ject fails.

Infor ION Development Guide | 121

Application Programming Interface (API)

Method

/datacatalog/vl/object/
list

/datacatalog/vl1/object/
{name}

/datacatalog/v1/object/
{name}/schema

/datacatalog/vl/object/
{name} /properties

/datacatalog/vl/object/
{name}/type

/datacatalog/vl/object/
fetch

/datacatalog/vl/object/
fetch/audits

Type
GET

GET

GET

GET

GET

POST

POST

Description

Returns a list of all objects in the
Data Catalog. Optionally, you
can filter by object name or ob-
ject type.

Returns the object name, type,
subtype, schema, properties, 1
astUpdatedOn, and lastUpd
atedBy for the specified object
name.

Returns the object schema for
the specified object name.

Note: This API cannot be used
to retrieve BOD or ANY objects.

Returns the object properties for
the specified object name.

Note: This API cannot be used
to retrieve BOD or ANY objects.

Returns the object type for the
specified object name.

Returns the object name, type,
subtype, schema, properties, 1
astUpdatedOn, and lastUpd
atedBy for each of the objects
specified in the API call. Up to

100 object names can be speci-
fied in the call.

Note: This API cannot be used
to retrieve BOD metadata

Returns the name, type, sub-
type, lastUpdatedOn, and la
stUpdatedBy information for
each of the objects that are
specified in the API call. Up to
100 object names can be speci-
fied in the call.

Note: This API cannot be used
to retrieve BOD information.

Infor ION Development Guide | 122

Application Programming Interface (API)

Method Type Description
/datacatalog/vl/object/ |GET Returns the total object count
summary and the most recent 1astUpda

tedOn value for objects in the
Data Catalog. Optionally, you
can filter by object type.

Note: This APl excludes BODs

Business Rules API

The Business Rules APIs expose functionality to request the execution of an approval matrix or a
decision matrix. These APIs can only execute matrices that have been created and approved in the
Business Rules Ul in ION Desk. These APIs are located in the “Infor ION” API suite in the “businessrules”
endpoint.

Note:

Only the matrices that are approved can be listed and executed through the Business Rules API.

The latest version of the matrix is used for each API call.

To execute a matrix, values are required for the matrix input parameters. The execution of a matrix

returns the same results as the Simulation operation in the Business Rules Ul. For example, the

results of an approval matrix execution could be a list with distributions to the same user, displayed

several times. The application that calls the API decides how to handle the approval chain. For

example, the application can perform one of these actions:

* Merge duplicate distributions and send tasks one after the other, as in the workflow task chain
in ION.

e Simultaneously send parallel tasks to all users in the resulting list.

The result of an approval matrix execution is a list with distributions to users. These users are
represented by the IFS Person ID, Group Names, and ManagerOf properties from Infor Ming.le
User Management. To retrieve the other relevant properties of these distribution elements, the
application that calls the API must be integrated with Infor Ming.le User Management.

The result of a decision matrix execution is a list of values for the output parameters from the matrix
definition. The values from the first row that matched the matrix conditions, which are evaluated
for the values provided for the matrix input parameters, are returned. For detailed information about
the methods that are exposed in this endpoint, see the Swagger documentation.

For more information on using ION APIs and interacting with Swagger documentation for the API
methods, see the Infor ION API Administration Guide.

Infor ION Development Guide | 123

Valid characters for document names

Appendix A: Valid characters for document names

Custom documents can use any standard letter from any language.

Upon import, the allowed characters are verified using a regular expression that is similar to this sample
expression:

/ [\u0041-\u0052\u0061-\u007A\u00AA\u0OB5\u00BA\u00CO0-\u00D6\u00D8-
\uOO0F6\u00F8-\u02C1\u02C6-\u02D1\u02E0-\u02E4\u02EC\u02EE\u0370-
\u0374\u0376\u0377\u037A-\u037D\u0386\u0388-\u038A\u038C\u038E-\u03A1\u03A3-
\u03F5\u03F7-\u0481\u048A-\u0527\u0531-\u0556\u0559\u0561-\u0587\u05D0-
\uO05EA\u05F0-\u05F2\u0620-\u064A\u066E\u066F\ul671-
\u06D3\u06D5\u06E5\u06E6\u06EE\U06EF\u06FA-\u06FC\u06FF\u0710\u0712-
\u072F\u074D-\u07A5\u07B1\u07CA-\u07EA\u07F4\u07F5\u07FA\u0800-
\u0815\u081A\u0824\u0828\u0840-\u0858\u08A0\u08A2-\u08AC\u0904-
\u0939\u093D\u0950\u0958-\u0961\u0971-\u0977\u0979-\u097F\u0985-
\u098C\u098F\u0990\u0993-\u09A8\u09AA-\u09B0\u09B2\u09B6—-
\u09B9\u09BD\u09CE\u09DC\u09DD\u09DF-\u09E1\u09F0\u09F1\u0A05-
\uOAOA\uOAOF\uOAL10\uOAL13-\uOA28\uOA2A~
\uOA30\u0A32\u0A33\u0A35\u0A36\uOA38\u0A39\UOA59-\UOASC\uOASE\u0AT72~
\u0A74\uO0A85-\uOA8D\uOA8F-\uOA91\u0A93-\uOAA8\uOAAA-\u0ABO\uOAB2\u0AR3\uOAB5-
\uOABI\uOABD\uOADO\UOAEO\UOAEI\uOBO5-\u0BOC\uOBOF\u0B10\u0B13-\u0B28\u0B2A-
\u0B30\u0B32\u0B33\u0B35-\u0B39\u0B3D\u0B5C\u0B5D\u0B5F-
\u0B61\u0B71\u0B83\u0B85-\u0B8A\uOB8E-\u0B90\uOB92-
\u0B95\u0B99\u0B9A\u0B9C\uOBSE\UOBIF\uOBA3\u0BA4\uOBA8-\uOBAA\UOBAE-
\u0BB9\u0BDO\u0C05-\u0COC\u0COE-\u0C10\u0C12-\u0C28\u0C2A-\u0C33\u0C35-
\u0C39\u0C3D\u0C58\u0C59\u0C60\u0C61\u0C85-\u0C8C\u0C8E-\u0C90\udC92-
\uOCA8\uO0CAA-\u0CB3\u0CB5-\u0CB9\uOCBD\uOCDE\uUOCEO\uOCEI\uOCF1\u0CF2\u0D05-
\uODOC\uODOE-\u0D10\u0D12-\u0D3A\u0D3D\u0D4E\u0D60\u0D61\u0D7A-\u0D7F\u0D85-
\u0D96\u0D9A-\u0DB1\u0ODB3-\u0DBB\uODBD\u0DCO-\u0DC6\u0EQLl-
\uOE30\uOE32\u0E33\u0E40-
\uOE46\uOE81\uOE82\uOE84\uOE87\u0E88\uOESA\uUOESD\u0E94-\uOE97\u0E99-
\UOE9F\uOEALl-\uOEA3\uOEA5\uOEA7\uOEAA\UOEAR\uOEAD-
\uOEBO\uOEB2\uOEB3\u0OEBD\uO0ECO-\u0EC4\u0EC6\uOEDC-\uOEDF\uOF00\u0F40-
\u0F47\u0F49-\u0F6C\u0F88-\u0F8C\ul000-\ul02A\ul03F\ul050-\ul055\ul05A-
\ul05D\ul061\ul065\ul066\ul06E-\ul070\ul075-\ul081\ul08E\ul0A0-
\ul0C5\ul0C7\ul0CD\ul0D0-\ul0FA\ulOFC-\ul248\ul24A-\ul24D\ul250-
\ul256\ul258\ul25A-\ul25D\ul260-\ul288\ul28A-\ul28D\ul290-\ul2B0\ul2B2-
\ul2B5\ul2B8-\ul2BE\ul2C0\ul2C2-\ul2C5\ul2C8-\ul2Db6\ul2D8-\ul310\ul312-
\ul315\ul318-\ul35A\ul380-\ul38F\ul3A0-\ul3F4\uld401-\ul66C\ul66F-

Infor ION Development Guide | 124

Valid characters for document names

\ul67F\ul681-\ul69A\ul6A0-\ul6EA\ul700-\ul70C\ul70E-\ul711\ul720-
\ul731\ul740-\ul751\ul760-\ul76C\ul76E-\ul770\ul780-\ul7B3\ul7D7\ul7DC\ul820~-
\ul877\ul880-\ul8A8\ul8AA\ul8BR0-\ul8F5\ul900-\ul91C\ul950-\ul96D\ul970-
\ul974\ul980-\ul9AB\ul9C1-\ul9C7\ulA00-\ulAl6\ulA20-\ulA54\ulAA7\ulB05-
\ulB33\ulB45-\ulB4B\ulB83-\ulBAO\ulBAE\ulBAF\ulBBA-\ulBE5\ulC00-\ulC23\ulC4D-
\ulC4F\ulC5A-\ulC7D\ulCE9-\ulCEC\ulCEE-\ulCF1\ulCF5\ulCF6\ulD00-\ulDBF\ulE0O-
\ulF15\ulF18-\ulF1D\ulF20-\ulF45\ulF48-\ulF4D\ulF50-
\UulF57\ulF59\ulF5B\ulF5D\ulF5F-\ulF7D\ulF80-\ulFB4\ulFB6-\ulFBC\ulFBRE\ulFC2-
\ulFC4\ulFC6-\ulFCC\ulFDO-\ulFD3\ulFD6-\ulFDB\ulFEO-\ulFEC\ulFF2-
\ulFF4\ulFF6-\ulFFC\u2071\u207F\u2090-\u209C\u2102\u2107\u210A-
\u2113\u2115\u2119-\u211D\u2124\u2126\u2128\u212A-\u212D\u212F-\u2139\u213C-
\u213F\u2145-\u2149\u214E\u2183\u2184\u2C00-\u2C2E\u2C30-\u2C5E\u2C60-
\Uu2CE4\u2CEB-\u2CEE\u2CF2\u2CF3\u2D00-\u2D25\u2D27\u2b2D\u2D30-
\u2D67\u2D6F\u2D80-\u2D96\u2DA0-\u2DA6\u2DA8-\u2DAE\u2DB0-\u2DB6\u2DB8-
\u2DBE\u2DCO-\u2DC6\u2DC8-\u2DCE\u2DD0-\u2DD6\u2DD8-
\u2DDE\u2E2F\u3005\u3006\u3031-\u3035\u303B\u303C\u3041-\u3096\u309D-
\u309F\u30A1-\u30FA\u30FC-\u30FF\u3105-\u312D\u3131-\u318E\u31A0-
\u31BA\u31F0-\u31FF\u3400-\u4DB5\u4E00-\u9FCC\uA000-\uA48C\uA4D0O-
\uA4FD\uA500-\uA60C\uA610-\uhA61F\uA62A\uA62B\urA640-\uA66E\uA67F-\uA697\uA6A0-
\UAGES\uA717-\uA71F\uA722-\uA788\uA78B-\uA78E\uA790-\uA793\uA7A0~
\UA7AA\UAT7F8-\uA801\uA803-\uA805\u”A807-\uA80A\UA8OC-\uA822\uA840-
\uA873\uA882-\uA8B3\uA8F2-\uA8F7\uA8FB\UA90A-\uA925\unA930-\ur946\ur960-
\UA97C\uA984-\uA9B2\uA9CF\uAA00-\uAA28\uAA40-\uARA42 \UAAL4-\UAALB\UAAGO-
\UAAT76\UAATA\UAABO0-\UuAAAF\uAAB1\uAAB5\uAAB6 \UAABI-\UAABD\UAACO\UAAC2 \UAADB~-
\UAADD\uAAEQ-\uAAEA\UAAF2-\uAAF4\uAB01-\uAB06\uABO9-\uABOE\uAB11l-
\UAB16\uAB20-\uAB26\uAB28-\uAB2E\uABCO-\uABE2\uAC00-\uD7A3\uD7B0-
\uD7C6\uD7CB-\uD7FB\uF900-\uFA6D\uFA70-\uFADS\uFBO0-\uFBO6\uFB13~
\uFB17\uFB1D\uFB1F-\uFB28\uFB2A-\uFB36\uFB38-
\UuFB3C\uFB3E\uFB40\uFB41\uFB43\uFB44\uFB46-\uFBB1\uFBD3-\uFD3D\uFD50-
\uFD8F\uFD92-\uFDC7\uFDF0-\uFDFB\UFE70-\uFE74\uFE76-\uFEFC\uFF21-
\UFF3A\uFF41-\uFF5A\uFF66-\uFFBE\UFFC2-\uFFC7\uFFCA-\uFFCF\uFFD2-
\UuFFD7\uFFDA-\uFFDC] +

Infor ION Development Guide | 125

	Contents
	About this guide
	Contacting Infor

	Introduction
	Adopting ION

	BODs and messages
	BOD
	Noun
	Verb
	General concepts
	Documentation Identification
	Message headers
	Mandatory fields
	Optional fields
	Deprecated field

	Verbs and Verb Patterns
	Verbs
	Action codes
	Sync verb
	Publishing a Sync BOD
	Process and Acknowledge verbs
	Get and Show verbs
	Load and Update verbs
	Confirm BOD
	Example of Use verbs
	Fragmented data
	Network connection

	Message contents
	Noun references
	Documents encoding
	Date and time

	Connecting to ION
	Infor Application Connector
	Using third-party connectors
	Alternative connectors
	Advantages and disadvantages of each connector

	Infor Application Connector (IMS)
	IMS interaction
	Application sends a message to ION
	ION sends a message to an application
	API specifications

	Using the Infor Application Connector
	Application connection points
	Inbox and outbox tables
	COR_OUTBOX_ENTRY
	COR_OUTBOX_HEADERS
	COR_INBOX_ENTRY
	COR_INBOX_HEADERS
	ESB_INBOUND_DUPLICATE

	Removing messages from the inbox and outbox tables
	Polling Message Preference
	Single I/O Box for Multi-tenant
	Single I/O Box for Multi-Logical Ids

	ION Connecting Considerations
	Handling transactions
	Message sequence
	Duplicated messages
	Sending documents in batch
	Publish historical data
	Message reprocessing
	Performance

	Adopting Event Management, Workflow, or Pulse
	Alerts, notifications and tasks
	When to use Pulse, Event Management and Workflow

	Starting a workflow from an application
	Starting a workflow through ProcessWorkflow
	Canceling a workflow through ProcessWorkflow
	Workflow BOD details
	Sample workflow BODs
	Sample ProcessWorkflow to start a workflow
	Sample AcknowledgeWorkflow when the request was accepted

	Creating alerts, tasks, or notifications from an application
	Creating alerts, tasks, or notifications
	Creating tasks from an application
	Important notes
	Creating an alert
	Creating a task
	Creating a notification

	Receiving status updates on alerts, tasks, or notifications
	Receiving status updates
	Receiving information about deleted activities

	Canceling alerts, tasks, or notifications
	Receiving status updates
	Canceling an alert
	Canceling a task
	Canceling a notification

	Pulse BOD details
	PulseAlert
	PulseTask
	PulseNotification

	Supported features

	Creating custom metadata
	Data Catalog contents
	Before customizing the Data Catalog
	Object Naming Conventions
	Custom objects of type ANY
	Defining a custom object of type ANY

	Custom objects of type JSON
	Defining a custom object of type JSON
	Newline-delimited JSON

	Custom objects of type DSV
	Defining a custom object of type DSV
	Dialect properties for DSV objects

	Using datetime formats
	Custom datetime formats

	Schema Property Order
	Defining additional object metadata properties
	Additional properties file

	Defining a custom noun
	Customizing an existing noun
	Using properties in the UserArea
	Using a custom XML structure in the UserArea
	Using an XSD extension for validation

	Custom message headers
	Custom headers file format

	Application Programming Interface (API)
	ION Process API
	Data Catalog API
	Generating security credentials
	Available REST APIs

	Business Rules API

	Valid characters for document names

